Parathyroid Disease & Surgery

L. Yuko Shimotake, MD
SUNY – Downstate
December 8, 2016
Case Presentation

- HPI: 65yo male with ESRD and hyperparathyroidism complaining of pain of the back and extremities. PTH level was 1835.

- PMHx: ESRD, Hyperparathyroidism, Hypertension, Prostate cancer s/p prostatectomy and radiation

Case Presentation

- Social Hx: denies alcohol abuse, cigarettes, or illicit drug use
- Allergies: Iodine
- Medications: Metoprolol, Simvastatin
- Labs: PTH 1835, Ca 8.8, Mag 2.0, Phos 2.8
Case Presentation

• Imaging:
 – CT scan
 – Sestamibi scan
 • 2 foci of increased uptake at thoracic inlet
Case Presentation

• Operation: Total Parathyroidectomy with autotransplantation
 – Positioning – cervical spine extension
 – Kocher’s incision approximately 2 fingerbreadths above sternal notch
 – Division of Platysma
 – Creation of subplatysmal flaps
 – Vertical incision between strap muscles
 – Lateral mobilization of the thyroid gland
 – Identification of the RLN
 – Identification and excision of each parathyroid gland
 • Right superior – expected
 • Right inferior – expected
 • Left superior – expected
 • Left inferior – substernal, aortic arch
 – Autotransplantation
 – Post-operative PTH 1835 → 190
Case Presentation

• Post-operative Course
 – PO Calcium QID
 – IV Calcium Glucagon taper
 – PO Vitamin D

• Serial exams
 – Chvostek’s sign
 – Perioral numbness/tingling

• Discharged home POD#8 with PO calcium QID
Case Presentation

• Questions about the case?
Parathyroid Disease & Surgery

- History of parathyroid gland & surgery
- Anatomy & Physiology
- Hyperparathyroidism – types
- Pre-operative work-up
- Parathyroidectomy
- Post-operative management
- Surgical complication and considerations
History

• 1852 – Sir Richard Owen
 – Rhinoceros autopsy at the London Zoo
 – Dinosauria – Darwinism

• 1880 – Ivar Sandstrom, MS
 – Human glands

• 1891 – F.D. von Recklinghausen
 – Osteitis fibrosa cystica
History

- 1925 – Felix Mendl
 - Credited for first parathyroidectomy
- ?1917 – Sir John Bland-Sutton
- 1926 – EJ Lewis
 - First in the States – Cook County Hospital, Chicago
Anatomy

- Embryology
 - Superior glands – 4th branchial pouches
 - Inferior glands – 3rd branchial pouches
- Blood supply
 - Inferior thyroid artery
 - Superior thyroid artery 20%
- Venous drainage
 - Superior thyroid vein
 - Middle thyroid vein
 - Inferior thyroid vein
Anatomy

• Superior glands
 – Dorsal to RLN crossing with ITA
 – Posterior aspect of upper/middle thyroid
 – Level of cricoid cartilage

• Inferior glands
 – Anteromedial to RLN crossing with ITA
Physiology

- Calcium
- Parathyroid hormone
- Vitamin D
- Calcitonin
Physiology – Calcium

• Normal calcium level
 – Total calcium 8.5-10.5mg/dL
 – Ionized calcium 4.4-5.2mg/dL

• Storage
 – Extracellular 10,000x > intracellular
 – 50% ionized/active form
 – 40% bound to albumin, phosphate, or citrate

• Function
 – Excitation-contraction coupling in muscle
 – Synaptic transmission
 – Coagulation
 – Hormone secretion
 – Second messenger regulation
 – Motility
 – Membrane trafficking
Physiology – Parathyroid Hormone

- 2-4 minute half-life
- Metabolic activation
 - Low serum calcium
 - Low 1,25 vitamin D
 - Catecholamines
 - Hypomagnesemia
- Function – calcium regulation
 - Bone
 - Osteoclast stimulation → calcium and phosphate secretion
 - Small bowel
 - Increases calcium absorption in small bowel via vitamin D
 - Kidney
 - Limits calcium excretion in distal tubule
 - Inhibits phosphate reabsorption
Physiology – Vitamin D

• Metabolic activation
 – 7-dehydrocholesterol in skin → Calcidiol in liver → Calcitriol in kidney

• Functions
 – Stimulates absorption of calcium and phosphate from gut
 – Stimulates osteoclasts → calcium resorption from bone
Physiology – Calcitonin

• Source
 – Thyroid C cells

• Metabolic activation
 – Calcium
 – Pentagastrin
 – Catecholamines
 – CCK
 – Glucagon

• Functions
 – Inhibits osteoclast-mediated bone resorption
 – Inhibits P reabsorption in kidneys
Hyperparathyroidism

- Primary
- Secondary
- Tertiary
Hyperparathyroidism

- Primary
- Secondary
- Tertiary
Hyperparathyroidism

• Primary

• Secondary

• Tertiary
Hyperparathyroidism

- Primary
- Secondary
- Tertiary
Primary Hyperparathyroidism

- 1% of adults in US
- Females are 2-3 times more likely than males
- Most common cause of hypercalcemia after excessive PO intake
Primary Hyperparathyroidism

• Causes of PHPT
 – Single adenoma 80-85%
 – Multiglandular hyperplasia 10%
 – Double adenoma 4%
 – Carcinoma 1%

• Associations
 – 100% of MEN1 patients
 – 25% of MEN2A patients
Primary Hyperparathyroidism

- **Bones**
 - Bone pain, osteopenia, osteoporosis and bone fractures
- **Stones**
 - Kidney stones
 - Renal dysfunction
 - Urinary frequency/incontinence
- **Moans**
 - Nausea/vomiting
 - Fatigue and proximal muscle weakness
- **Psychiatric overtones**
 - Poor concentration and depression
 - Delirium and coma
- **Cardiovascular disease**
 - Hypertension, MI, atherosclerosis
Primary Hyperparathyroidism

• Most patients are asymptomatic
 – 23-62% develop symptoms over 10 years if left untreated

• Surgical indications for asymptomatic PHPT
 – Age <50yo
 – BMD >-2.5SD
 – Calcium >1 over normal
 – Creatinine clearance <60
 – Previous bone fracture/fragility
Primary Hyperparathyroidism

- Treatment –
 - Parathyroidectomy
 - Single gland excision if solitary tumor
 - Bilateral neck exploration if multiglandular disease or MEN syndrome
Primary Hyperparathyroidism

- **Pre-operative Work-up**
 - Rule out Familial Hypercalcemia Hypocalceuria
 - 24h urine collection and creatinine
 - Ultrasound
 - Evaluates parathyroid and thyroid
 - Sestamibi scan
 - Tc99 uptake with relation to mitochondrial activity
 - Less accurate with multiglandular disease and larger tumors
 - 4D CT scan – more rapid tumor uptake
 - MRI
 - Selective venous sampling
 - Rarely performed
 - 2-fold gradient from contralateral side

- Sestamibi + US = 94-99% sensitivity
Primary Hyperparathyroidism

• PTH levels
 – Immediately pre-operatively
 – Send 5 and 10 minutes after removal of gland
 – Should decrease by 50%
Secondary Hyperparathyroidism

- Normal but hyperplastic parathyroid tissue

- Causes
 - Chronic renal insufficiency*
 - Poor calcium intake or absorption
 - Vitamin D deficiency
 - Hyperphosphatemia
Secondary Hyperparathyroidism

- Clinical presentation
 - Renal osteodystrophy
 - Periarticular calcium deposits
 - Nephrocalcinosis
 - Increased cardiovascular mortality
 - Calciphylaxis – 80% mortality
Secondary Hyperparathyroidism

• Treatment
 – Medical management
 – Surgical management
Secondary Hyperparathyroidism

• Treatment
 – Medical management
 – Surgical management

 • Calcium supplements
 • Calcimimetics – Calcinet – calcium-sensing receptor protein to calcium
 • Vitamin D analogs
 – Lowers PTH
 – Elevates Calcium
 – Elevates Phos
 • Phosphate-binders
 • Low phosphate diet
 • Dialysis

• Monitor Ca, P, Vitamin D, and PTH (150-300 pg/ml)
Secondary Hyperparathyroidism

- **Treatment**
 - Medical management
 - Surgical management

- Parathyroidectomy

- Renal transplant – 95% successful

- Address underlying cause
Secondary Hyperparathyroidism

- Indications for parathyroidectomy
 - Failed medical management
 - Refractory symptoms
 - Intractable rapid turnover bone disease
 - Calciphylaxis – emergency

- Relative contraindication – imminent renal transplant
Secondary Hyperparathyroidism

• Pre-operative workup
 – Thyroid US
 • Assess Parathyroid and Thyroid
 – No localization studies needed – except if
 • Concern for ectopic or supernumerary parathyroid glands
 • Concerning ultrasound
Tertiary Hyperparathyroidism

- Chronically stimulated parathyroid gland → autonomous
Tertiary Hyperparathyroidism

• Treatment
 – Calcinet – lowers calcium and PTH
 – Parathyroidectomy
 • Post-transplant parathyroidectomy
 • Pre-transplant parathyroidectomy
Parathyroidectomy

• Ectopic parathyroid gland

• Subtotal versus total parathyroidectomy

• Autotransplantation

• Alternative approaches
Parathyroidectomy – Ectopic Gland

- Captain Charles Martell
 - Parathyroid adenoma
 - 8 fractures
 - Chronic joint pain
 - Shrank from 6’1” to 5’6”

- 6 neck explorations at MGH and in New York
 - All negative

- Studied anatomy textbooks himself and insisted on chest exploration

- Operation #7
 - 3cm adenoma found in mediastinum → partial excision

- Post-operatively
 - Tetany
 - Nephrolithiasis causing ureteral obstruction
 - OR → laryngospasm → expired
Parathyroidectomy – Ectopic Gland

- 5-40% ectopic location
- Superior glands
 - Typically found 2cm radius of RLN-ITA junction
 - Tracheoesophageal groove
 - Retroesophageal groove
 - Posterosuperior mediastinal
 - Intrathyroidal
 - Carotid sheath
 - Paraesophageal
- Inferior glands – more variable
 - Typically found anteromedial to RLN-ITA junction
 - Intrathymic*
 - Anterior superior mediastinal
 - Intrathyroidal
 - Thyrothymic ligament
 - Submandibular
Parathyroidectomy – Ectopic Gland

• Intra-operative tools
 – Parathyroid levels
 – Ultrasound
 – Frozen section
 – Gamma probe with Tc99
Parathyroidectomy – Ectopic Gland

- Focused parathyroidectomy
- → Bilateral extended cervical exploration
- → Consider Cervical thymectomy
- → Hemithyroidectomy on side of localization studies
- • Median sternotomy
 - Wait!
Meta-analysis of 13 studies

1589 patients with secondary hyperparathyroidism
- s/p subtotal parathyroidectomy
- s/p total parathyroidectomy with autotransplantation

End-points
- Rate of symptomatic improvement
- Radiological success
- Recurrence or persistence
- Need for re-operation

No significant difference between subtotal and total with autotransplantation
Parathyroidectomy — Autotransplantation

- Autotransplantation
 - Mincing of most normal appearing gland
 - Sites
 - Sternocleidomastoid muscle
 - Brachioradialis muscle
 - Chest wall soft tissue

- Cryopreservation
 - Cryopreservation — 60% successful; MEN or high risk patients
 - Immediate implantation — 90% successful
Open parathyroidectomy

Focused minimally invasive parathyroidectomy (MIP)
 - Unilateral neck exploration

Minimally invasive endoscopic (MIEP)
 - Via neck or axilla
 - Requires 5 incisions if bilateral
 - 10% conversion rate

Minimally invasive videoscopically-assisted (MIVAP)
 - Gasless dissection
 - Higher complication rate

Minimally invasive radio-guided (MIRP)
 - Tc99 injection pre-operatively
 - Gamma probe
Post-operative Management

- Hungry bone syndrome
- Recurrent laryngeal nerve injury
- Expanding hematoma
- Persistent or recurrent hyperparathyroidism
Post-operative Management

• Hungry bone syndrome
• Recurrent laryngeal nerve injury
• Expanding hematoma
• Persistent or recurrent hyperparathyroidism

• Rapid drop in PTH → boney absorption of serum calcium
• Nadir at 2-4 days post-op

• Presentation
 – Tetany
 – Seizures
 – Heart failure
Post-operative Management

- Hungry bone syndrome
- Monitor calcium levels
- Serial exams
 - Chvostek’s sign
 - Trousseau’s sign
- Medications
 - PO Calcium supplementation – 4-6g/day
 - IV Calcium Gluconate
 - Dialysis patients can have increasing dialysate bath calcium concentration
 - Vitamin D – Calcitriol
 - Preoperative vitamin D deficiency
 - Persistent despite calcium supplementation
 - Treat hypomagnesia
Post-operative Management

• Hungry bone syndrome
• Recurrent laryngeal nerve injury
• Expanding hematoma
• Persistent or recurrent hyperparathyroidism

• If persistent hypocalcemia
 – Failed autotransplantation
 – Remnant parathyroid tissue
Post-operative Management

- Hungry bone syndrome
- Recurrent laryngeal nerve injury
- Expanding hematoma
- Persistent or recurrent hyperparathyroidism
- Unilateral – hoarseness or breathiness
- Bilateral
 - Respiratory failure
 - Immediately after extubation
Post-operative Management

- Hungry bone syndrome
- Recurrent laryngeal nerve injury
- Expanding hematoma
- Persistent or recurrent hyperparathyroidism

- Remove staples/sutures to release pressure
- Intubate if necessary
Post-operative Management

- Hungry bone syndrome
- Recurrent laryngeal nerve injury
- Expanding hematoma
- Persistent or recurrent hyperparathyroidism

- Persistent – no resolution
 - Inadequate resection
 - 80% of re-operations

- Recurrent – >6m postop
 - Return of tumor/tissue
 - 20% of re-operations
Summary

• Most common sites of superior and inferior parathyroid glands are superolateral and anteromedial to crossing of ITA and RLN, respectively.
• Ideal localization studies include Sestamibi scan with or without ultrasound.
• Ectopic parathyroid adenomas can be found along their embryologic origin.
• Consider cervical thymectomy and hemithyroidectomy if still cannot find a ectopic parathyroid adenoma.
• Do not perform sternotomy on the first surgery.
• Hungry bone syndrome can be prevented by post-operative calcium and close monitoring.
Thank you!

• “It hardly seems credible that the loss of bodies so tiny as the parathyroids should be followed by a result so disastrous.”

— Halsted
A 45yo perimenopausal woman is referred for possible parathyroidectomy. Her serum calcium has been 9-9.5mg/dL over the past year. Cl 100, Phos 3.4, PTH 90 (N 30-55). Bone density scan confirms osteopenia of the femoral neck. Sestamibi scan is not conclusive. Which of the following would you recommend?

- A. Parathyroidectomy
- B. Hormone replacement therapy
- C. Cincalcet
- D. Bisphosphonates
- E. Measure Vitamin D levels
During a neck exploration for primary hyperparathyroidism, only 3 parathyroid glands were identified and all appear normal in size. What is the best next step in management?

- A. Thymectomy
- B. Remove all 3 glands and re-implant 1 into the forearm.
- C. Remove 2.5 glands and close.
- D. Perform median sternotomy
- E. Obtain biopsy samples of all 3 glands and close.