Mechanisms to optimize low hemoglobin levels in a Jehovah’s Witness patient

Michael Ablavsky
HPI
- 66 yo M with 1 day of hematemesis.

PMHx/PSHx
- Hep C, liver cirrhosis, CVA
 - Child class C, MELD score 12.
- ex-lap for bowel obstruction

Social
- Jehovah’s Witness, IVDU

PE
- Afebrile, not tachycardic, normotensive.
- Lethargic, aphasic
- Abdomen: distended
Labs:
- Hb 14, plt 84, INR 1.4

EGD. HD #0
- Pooling of blood in distal esophagus. Unable to visualize site of bleeding. s/p 13 bands deployed. Bleeding continued.
- Hb 10.2→9.4

HD # 1
- Pressors for hypotension.
- TIPS attempted and aborted because of occluded right IJ vein

HD # 2
- Hb 7.9→6.3, INR >7.5, AST/ALT: 12800/3400
- Made DNR by family
- Patient expired.
Jehovah’s Witnesses

- Origin: 1870’s

- Jehovah’s Witnesses number some 8 million members worldwide. Doubled in last 16 yrs.

- Directed by a “governing body” of elders

- Headquarters: Brooklyn.
Jehovah’s Witnesses

- refusal of blood transfusions by the Jehovah's Witness community is based on
 - “But you must not eat meat that has its lifeblood still in it” Genesis 9 v4
 - “And wherever you live, you must not eat the blood of any bird or animal” Leviticus 7 v25
 - “None of you may eat blood, nor may any alien living among you eat blood” Leviticus 17 v12
 - “You should pour it out upon the ground as water” – prohibits banking or acceptance of blood.

- Accepting blood might compromise their spiritual life.
<table>
<thead>
<tr>
<th>Generally not acceptable</th>
<th>May be acceptable</th>
<th>Generally acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red cells</td>
<td>Red cell fractions</td>
<td>Crystalloids and colloids</td>
</tr>
<tr>
<td></td>
<td>Haemoglobin (human, animal, or synthetic, e.g. Hemopure®)</td>
<td>Recombinant erythropoietin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinant factor VIIa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artificial blood substitutes</td>
</tr>
<tr>
<td>White cells</td>
<td>White cell fractions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interferons or interleukins</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Plasma fractions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immunoglobulins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cryoprecipitate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clotting factors</td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td>Platelet fractions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platelet factor 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acute hypervolaemic haemodilution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intraoperative cell salvage*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiopulmonary bypass or extracorporeal membrane oxygenation*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal dialysis*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plasmapheresis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidural blood patch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transplants</td>
<td></td>
</tr>
</tbody>
</table>
Targeted therapies for severely anemic

- Stop / minimize blood loss
- Correct coagulation defects and promote hemostasis
- Optimize anemia tolerance
- Enhance hemoglobin and red blood cell production

ADEQUATE PERFUSION
Equipment

- Arterial tourniquets
- Anti-shock garments
 - Increasing peripheral vascular resistance.
 - Compress abdomen and lower limbs

- Esophageal Sengstaken-Blakemore / Minnesota Tube
 - Endoscopy unavailable / unsuccessful
 - Medical agents failed
 - Rife with complications
Optimizing anemia

- **Acute normovolemic hemodilution**
 - Removal of blood + rapid infusion of colloid or crystalloid
 - **Any blood lose will have lower hematocrit**
 - Enhances cardiac output
 - May not be acceptable – must have closed circuit
 - Some evidence suggests it may reduce allogeneic transfusion

- **Permissive hypotension**
 - Systolic 80-90, map 60-65, 30% reduction of baseline
 - Reducing blood loss

- **Cell Saver**
 - Blood suctioned, centrifuged, washed, reinfused
 - **Contraindications**: contamination, sickle cell disease.
Optimize anemia tolerance

- **Key principle in managing low Hb in Jehova’s Witnesses**

- **Deliberate hypothermia**
 - reduce O$_2$ consumption
 - increase dissolved portion of oxygen

- **Sedation / Paralysis**
 - Prevent agitation / shivers \rightarrow decrease metabolic demand
 - mechanical ventilation \rightarrow reduce work of breathing and supply high oxygen content
Prophylactic hypothermia and neuromuscular blockade to limit myocardial oxygen demand in a critically anemic Jehovah's Witness after emergency surgery

Michael J. Klein, * Timothy I. Carter, Michael C. Smith, Jonathan Wong, and Gainosuke Sugiyama
Correct coagulation defects

- Correct underlying coagulation defects
 - Platelet, Fresh frozen plasma, cryoprecipitate → NOT allowed
 - PCC – maybe
 - Factors II, VII, IX, X
 - urgent reversal of warfarin anticoagulation
 - Vit K
Correct coagulation defects

- Prohemostatic treatment
 - Tranexamic acid
 - may reduces rates of mortality and urgent surgery in upper GI bleeds
 - may reduce post operative blood losses and transfusion requirements
 - **Cochrane Review**: TXA can safely reduce death in trauma patient with bleeding.

- Recombinant activated factor VII
 - Several trials have shown control of bleeding from surgery, or severe trauma
 - Reduces need for RBC transfusion and improving hemostasis.
 - **Cochrane Review**: No evidence to support or reject administration for patient with liver disease and upper GI bleed.
Hb concentration and RBC production

- Hb concentration >7 can be tolerated
- Hb < 5-7 \(\rightarrow\) drastic increase in mortality

- Enhancing speed of Hb production
 - Key substrates must be coadministered
 - IV Iron
 - maximal erythropoietic response if adequate iron stores
 - Vit B12, folate
 - Little evidence to suggest benefit in acute setting
 - Potential benefit outweighs potential risk

- Limit regular phlebotomy
Hb concentration and RBC production

- **Recombinant Erythropoietin**
 - Stimulates *proliferation, differentiation, release of erythrocytes + Hb production*

- **Response rate can be dose dependent**
 - Inc. reticulocyte count → 3-10 days

- **Reviews**
 - Pre+post operative use of recombinant erythropoeitin have inc in Hb and reduction in allogeneic transfusion
 - Potential venous thromboembolism
Oxygen Carriers / Oxygen Solvents

Hemoglobin-based oxygen carriers (HbOC)
- Bovine hemoglobin, No ABO matching
- Deliver oxygen by facilitated diffusion
- Short intravascular half-life, profound vasoconstriction, MI

Perfluorocarbons (PFC’s)
- \(C_{\text{A}O_2} = 1.34 \times (\text{Hb}) \times (\text{SaO}_2) + 0.003 \times (\text{PaO}_2) \)
- Inert, artificial

- A bridge until erythropoiesis recovers
Severe anemia protocol for JW

Hb <7

Hypoperfusion, hemorrhage, Instability? NO

YES +HbOC +/- HbOC

control bleeding
correct coagulopathy
reduce oxygen consumption
inc supplemental O₂
Summary

- Lower Hb is associated with increased mortality in JW
- Multimodal approach
 - Enhance erythropoiesis
 - Reduce blood loss
 - Increase oxygen delivery
 - Reduce oxygen consumption
 - Avoid iatrogenic anemia
References

K. Berend, M. Levi
Management of adult Jehovah's Witness patients with acute bleeding