Bullous Lung Disease

Lidie Lajoie, MD SUNY Downstate Surgery Grand Rounds February 21, 2013

Clinical Case

- 49 year old man with HTN, SLE, interstitial lung disease, and pulmonary HTN on home O2 presented to ER with 2 days progressive dyspnea
- ❖ PMH: followed at KCHC for interstitial lung disease. (FEV1 1.3L, FVC 1.4L, < 1 block exercise tolerance)
- Social: 20 pack-year smoking history
- Medications: include predinsone 80mg daily

Initial Presentation

- ❖ T 97 BP 146/101 HR 126 RR 34
- O2 sat undetectable
- Thin appearing, hyper-resonance on chest auscultation bilaterally
- ABG: 7.24/26/62 on 100% Nonrebreather FM
- ER course:
 - Placed on BIPAP (ipap 10/epap 5)
 - Zosyn for presumed PNA
 - CXR, CT chest & CT surgery consultation obtained
 - Admitted to MICU

1 MONTH PRIOR CXR

IN ED AFTER BIPAP

Hospital Course

- Scheduled for bullectomy to be performed HD #3
- Emergent intubation in early morning on day of surgery for tachypnea (RR 40-50)
- ❖ CMV 450/12/5/100%
- ❖ Post-intubation: 98.6 149/92 105
- ❖ ABG 7.4/41/109/26
- Neither anesthesia or surgical team informed of events

PRIOR TO INTUBATION

POST-INTUBATION

Intraoperative Events

- Hypotension on initiation of anesthesia in OR
- CVC, arterial line, double-lumen ET tube placed
- Right upper lobe blebectomy and decortication via right posteriolateral thoracotomy
 - Poor tolerance of single-lung ventilation
 - Endo-GIA 3.5mm stapler with Peri-strips
- Pathology:
 - usual interstitial pneumonitis with subpleural bullae
 - No infection, inflammation, or tumor

Postoperative Course

- Initially improved oxygenation & hemodynamics
- * rapid decompensation 14hrs postop (low BP & UOP) →
 expired POD 4:
 - Fever 102 F
 - pulmonary hypertension (PAP 65/40)
 - echo-confirmed right heart failure (Cl 1.5)
 - ❖ liver failure (AST/ALT 1900/1400, bili 16, INR 3.3)
 - renal failure (BUN/Cr 43/5.3)

Bullous Lung Disease

After a brief discussion of spontaneous pneumothorax...

- Which of the following is the most common cause of spontaneous pneumothorax?
- Which of the following is an indication for surgical intervention in a patient with spontaneous pneumothorax?
- Which of the following is associated with secondary pneumothorax?

Pneumothorax

- 1 Air flow until no pressure difference
- ↓ Apex to base pressure gradient
- ↓ Lung compliance
- ↓ Functional residual capacity
- ↓ Ventilation
- Oxygenation
 Slight shunt

Tension Pneumothorax

- ↑ Continuous air flow (one-way valve)
- ↑ Intrapleural pressure
- Mediastinal shift (alteration of lung mechanics)
- ↓ Ventilation
- ↑ Shunt
- ↓ Oxygenation
- ↑ Cardiac stroke volume
- ↑ Heart rate

Spontaneous Pneumothorax

Primary

- ❖ 10-30 yrs old
- thin men with localized apical blebs but otherwise normal lungs
- ❖ 7-18/100,000 annually
- Ruptured subpleural bleb

Secondary

- ❖ 60-65 yrs old
- structural lung disease
 - * COPD, asthma
 - Interstitial lung disease
 - HIV/PCP PNA, TB
 - Cystic fibrosis, a-1 antitrypsin deficiency
- 6/100,000 annually
- Ruptured bulla (4x increase mortality/PTX)

Negative intra-pleural pressure favors distension of apical alveoli. Rupture → PTX

Alveolar wall destruction by inflammatory cells.
Rupture →
BULLA

Bleb vs Bulla

VATS bullectomy & pleurodesis

Bullectomy (Reduction Pneumoplasty)

- Factors predicting success (based on retrospective data)
 - Bulla size > 1/3 hemithorax = giant bulla
 - Marked compression of adjacent lung tissue demonstrated by CT scan
 - FEV1 < 50% predicted</p>
- NETT (Nat'l emphysema treatment trial) for elective LVRS
 - operative mortality up to 6%
 - pulmonary morbidity 30%
 - ♦ High risk for death with little functional benefit FEV1<20% predicted → 16% 30-day mortality</p>

- Which of the following is the most common cause of spontaneous pneumothorax?
 - A) tuberculosis
 - B) rupture of small blebs
 - C) emphysema and chronic bronchitis
 - D) endometriosis

- Which of the following is an indication for surgical intervention in a patient with spontaneous pneumothorax?
 - A) recurrent spontaneous pneumothorax
 - B) persistent air leat at the end of a 3-day trial of closed drainage of a spontaneous pneumothorax
 - C) complete collapse of the lung in a patient with an initial spontaneous pneumothorax
 - D) pregnancy

- Which of the following is associated with secondary pneumothorax?
 - A) usually occurs in young women
 - B) observation if small and asymptomatic
 - C) video-assisted repair usually effective
 - D) rarely associated with underlying lung disease

References

- ❖ Beauchamp G and Ouellette D. "Spontaneous pneumothorax and pneumomediastinum" in Pearson's Thoracic and Esophageal Surgery, 3rd ed. 2008.
- Brister NW et al. "Anesthetic considerations in candidates for lung reduction surgery" Proc Am Thorac Soc 2008;5:432-7.
- Reyes, KG and Mason DP. "Spontaneous Pneumothorax" in Sabiston & Spencer's Surgery of the Chest, 8th ed. 2009.
- Schipper, PH et al. "Outcomes after resection of giant emphysematous bullae" Ann Thorac Surg 2004;78:976-82.
- Snider, GL. "Reduction pneumoplasty for giant bullous emphysema implications for surgical treatment of nonbullous emphysema" Chest 1996;109(2):540-9.
- Van Natta, TL and Iannettoni, MD. "Reduction pneumoplasty for a giant right upper lobe bulla causing massive bilateral lung compression" J Thorac Cardiovasc Surg 2007;133(6):1674-5.