Hepatic Artery Aneurysms

Feiran Lou MS MD
Brooklyn VA Hospital
Department of Surgery
Case

68 yo man referred to vascular clinic for asymptomatic hepatic artery aneurysm detected on CT screening for lung cancer

PM/SH: DM, HTN, HLD, Parkinson’s, Bipolar disorder

Meds: ASA, benztropine, citalopram, divalproex, lisinopril, metformin, simvastatin, risperidone, pramipexole

Social hx: current tobacco (60 pack-years), past ETOH, cocaine marijuana
Physical Exam
No abdominal tenderness or pulsatile masses

Labs
WNL
Operation

Repair of hepatic artery aneurysm with interposition PTFE graft
POD 1 reintubated for decreased mental status
POD 7 atrial fibrillation refractory to medical management, requiring cardioversion
POD 13 ablation for a. fib
POD 21 discharged to subacute rehab facility
Splanchnic Artery Aneurysms

- **Aneurysm** – dilation or enlargement of an artery to > 1.5-2 X normal diameter
- **Saccular** (focal, eccentric) vs **fusiform** (elongated, concentric)
- Affecting the celiac artery, SMA, IMA, or branches
- Aortic and renal artery aneurysms **excluded**
Splanchnic Artery Aneurysms

• 1/3 will have associated aortic, renal, iliac, lower extremity, or cerebral artery aneurysm
• Incidence 0.1-0.2% general population, ↑10% in elderly
• 22% present with rupture
 – Periop mortality rate 20-70%
Splanchnic Artery Aneurysms

- True aneurysms
 - Atherosclerosis
 - Medial degeneration
 - Collagen vascular disease
 - Fibrousvascular dysplasia

- Pseudoaneurysms
 - Infection
 - Inflammation
 - Vasculitis
 - Iatrogenic
 - Trauma
 - Rapid growth rates

www.downstatesurgery.org
Hepatic Artery Aneurysms

- 1809 first described by Wilson
- 1903 first successful ligation
- Incidence 0.1-0.4% in general population
- Hepatobiliary instrumentation → ↑ incidence, ↑ pseudoaneurysms
- Distribution
 - 80% extrahepatic
 - 63% common hepatic artery
 - 28% right hepatic artery
 - 5% left hepatic artery
 - 20% intrahepatic
Hepatic Artery Aneurysms

- Male to female ratio 3:2
- Highest rupture risk: 20-80%
- Mean age 60
- Etiology
 - 30% degenerative (atherosclerotic)
 - Associated comorbidities: HTN (72%), arterial dysplasia, biliary diseases, percutaneous, endoscopic procedures
- 1/3 with concomitant splanchnic aneurysms
- 40% nonsplanchnic aneurysms
Clinical Presentation

- Majority identified incidentally
- Symptoms
 - Abdominal discomfort
 - Back pain
 - Rupture to peritoneal cavity or biliary tract
 - Quincke’s triad: hemobilia, jaundice, right upper quadrant pain
 - Erosion into stomach
Natural History

• Not well defined
• Pseudoaneurysms: ↑ symptomatic, ↑ rupture
Treatment

• Indications for intervention
 – Symptoms
 – Pseudoaneurysms
 – > 2 cm
 – Multiple HAAs
 – Inflammatory conditions (periarteritis nodosa)

• Surgery vs. endovascular
Surgical Repair

• Dependent on lesion location
 – Excision and repair
 – Ligation w/ or w/o reconstruction
 – Hepatic resection
Hepatic Artery Aneurysmorrhaphy
Inflow to the Liver

- **Portal vein**
 - 75% volume
 - 50-70% oxygenation

- **Hepatic artery**
 - 25% volume
 - 30-50% oxygenation
 - Collaterals: perihepatic arteries from inferior phrenic, GDA
1. Ligation
2. Endovascular Ablation
Arterial Reconstruction
Aortohepatic Bypass
Embolization
Resection
Ligation
Intervention

- Avoid ligation of hepatic artery in ↓ liver function
- If proper or right hepatic artery ligated → cholecystectomy
- Embolization ideally suited for intraparenchymal aneurysms – parenchymal necrosis
Hepatic Artery Pseudoaneurysms after Liver Transplantation

- 0.3-2%
- Intra-abdominal or GI bleeding 2 months after transplant
- Rupture preceded by intra-abdominal infection
- Treatments: resection and revascularization, coil embolization, re-transplantation
<table>
<thead>
<tr>
<th>Management</th>
<th>All</th>
<th>Complications</th>
<th>Re-bleeding</th>
<th>Mortality at 30 days</th>
<th>Mortality at 51.0±21.1 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>45 (40)</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Coil embolization</td>
<td>27 (26)</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Glue embolization</td>
<td>4 (3)</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Covered stent</td>
<td>5 (5)</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Combined methods</td>
<td>9 (6)</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Surgery</td>
<td>14 (11)</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Venous bypass</td>
<td>3 (3)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Resection+ligation</td>
<td>7 (4)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>1 (1)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Splenectomy</td>
<td>1 (1)</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Liver transplantation</td>
<td>2 (2)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Conservative</td>
<td>194 (182)</td>
<td></td>
<td>12</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>With follow-up</td>
<td>108 (104)</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Without follow-up</td>
<td>86 (78)</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
Summary

• Hepatic artery aneurysms ↑ing incidence
• Pseudoaneurysms have ↑ risk of rupture
• Intervention indicated in size >2 cm
• Approach dependent on location of aneurysm
OMG Dr. Song is running the bowel!!

Why am I running the bowel??