Enterocutaneous Fistula

Christopher Lau SUNY Downstate

March 22, 2012

History

- 62 year old female with history of repair of an incarcerated ventral hernia
- Primary repair with suture, no mesh, no bowel repair/resection
- Patient returned 5 weeks later with drainage from the wound due to enterocutaneous fistula
- Low output fistula was managed non-operatively with antibiotics, wound care, and nutritional optimization
- Patient was discharged home with PO nutrition and stoma appliances for control of output

- ☼ Patient was followed as an outpatient
- Stoma appliance could not provide a proper seal and surrounding skin became macerated
- Constant foul odor
- Causing hardship for patient and family
- Explained risks of surgery including leak, inability to find fistula, need for ostomy, recurrent fistulas, etc
- **Patient wanted surgery regardless**

Past Medical History

- ⇔ PMH: none
- **PSH:** repair of incarcerated epigastric hernia
- Allergies: NKDA
- Medications: none
- Social Hx: denied excessive, alcohol, tobacco or drugs
- Family Hx: non-contributory, no history of IBD

Physical Exam

- Gen: AAOx3, NAD
- CVS: S1S2, normal
- Chest: clear bilaterally
- Abdomen: soft, nondistended, midline fistulous opening with bilious content draining, large area of macerated and tender skin with serous discharge, foul odor from output
- Ext: no edema

Labs

- ☼ CBC: 5.18>12.2/37.2<344</p>
- ☼ Chem: 141/3.2/103/26/4/0.44/105/9.5
- □ LFT: 7.2/3.8/24/10/60/0.5

Pre Op CT

Post Op CT

Fistulogram

Fistulogram

Surgery

- Over 4 months after the initial surgery, patient was taken back to the OR for exploratory laparotomy
- Adhesions were lysed
- **☼** Methylene blue was instilled into ECF tract
- EC fistula tract to ileum was excised
- Cutaneous portion of EC fistula was excised

Surgery

- Entire small and large bowel was checked and there was no other fistula or leak
- Distal colon and rectum filled with hard stool
- Closure of fascia without tension required dissection of subcutaneous tissue off of fascia

- POD 1: Doing well
- POD 2: Patient became tachycardic and hypotensive
 - ♠ Abdomen was increasingly distended and tender
 - ☼ Patient became oliguric
 - Patient was resuscitated and taken back to the OR

Re-exploration

- Peritoneal cavity filled with liquid stool
- Proximal colon filled with liquid stool and distal colon hard stool
- No small bowel perforation or fistula opening
- Small 1-2mm hole on inferior part of base of cecum
- Resection of cecum and terminal ileum with end ileostomy

- ☼ Patient became hypotensive, bradycardic, had severe bronchospasm, severe facial swelling
- Anaphylactic shock secondary to anesthetic agent
- Treated with dexamethasone, epinephrine and diphenhydramine
- Patient improved but required multiple vasopressors and aggressive resuscitation with colloids and crystalloids

- ☼ Patient weaned to minimal vent support and off vasopressors over the next 2 days
- HD 4: Patient noted to have bowel protruding into midline wound
 - Returned to OR for reduction of parastomal hernia
 - **⇔** Fascia tightened with sutures
 - Subcutaneous tissue tacked back down to fascia
 - ❖ VAC dressing placed

- HD 8: Again noted to have bowel in midline wound
 - Dehiscence of lower midline wound
 - Repaired with underlay biologic mesh
 - Superior portion reinforced with overlay biologic mesh
 - VAC dressing placed

- **☼** Patient continued to improve
- ! Ileostomy functioning
- ☼ Regular diet
- Wound healing with VAC
- Discharged to Rehab

Pathology

- **☼** 1: Enterocutaneous fistula tract
 - Granulation tissue
 - Acute and chronic inflammation including foreign body giant cell reaction
- 2: Terminal ileum, cecum, and appendix
 - **○** Cecal perforation with surrounding inflamed granulation tissue
 - Serosal fibrosis and chronic inflammation of ileum, cecum, and appendix
 - Focal submucosal and intramural fibrosis, and submucosal congestion in the cecum consistent with chronic ischemia

Management of Low Output Enterocutaneous Fistula

Introduction

- ☼ ECF is an abnormal communication between the bowel lumen and skin, often associated with sepsis, fluid and electrolyte abnormalities, and malnutrition
- Estimated 75-85% of fistulas form after operation due to bowel injury, inadvertent enterotomy, or anastamotic leak
- Associated with high morbidity and mortality
- **Enterocutaneous fistula ranges from:**
 - Easily manageable low-output colocutaneous fistula
 - High output enteroatmospheric fistula in an open abdomen

- ♠ Anatomy of fistula can be characterized by clinical observation, analysis of the effluent, and radiologic studies
- □ In general, about 1/3 of ECF will close spontaneously
- **☼** If ECF remains open after 2 months, spontaneous closure is unlikely
- Fistula healing rate is 75-85% after definitive surgery
- Key principle of fistula care:

 - Drainage of local abscess
 - Control of fistula effluent
 - **⇔** Skin protection

ECF Classification

```
Box 1
ECF classification
Anatomic classification
   Gastrocutaneous
   Enterocutaneous
   Colocutaneous
Etiologic classification
   latrogenic
      Operation
      Percutaneous drainage
   Trauma
   Foreign body
   Crohn disease
   Infectious disease
      Tuberculosis
      Actinomycosis
   Malignancy
Physiologic classification
   Low output (<200 mL/d)
   Moderate output (200-500 mL/d)
   High output (>500 mL/d)
```

www.downstatesurgery.org Factors That Predict Spontaneous Closure

Surgical aetiology

Free distal flow

Healthy surrounding bowel

Simple fistula with no associated abscess cavity

Fistula tract > 2 cm

Fistula tract not epithelialized

Enteral defect < 1 cm (with no discontinuity)

Low fistula output

No co-morbidity

FRIENDS

- Causes of a persistent ECF
 - Foreign body
 - Radiation
 - ☼ Inflammation/Infection
 - **Epithelialization**
 - ☼ Neoplasm
 - Distal obstruction
 - ⇔ Sepsis

Initial Management

- Aggressive fluid resuscitation and correction of electrolytes
 - High output should be replaced with K+ containing crystalloid
- Skin care
 - ☼ Requires a dedicated wound care person who will adapt to the changing characteristics of the fistula
 - Prevent intestinal contents from damaging surrounding skin
 - VAC dressing may help control the output
 - ☼ Data unclear about whether VAC is better or worse than traditional

Control of Fistula Output

- Minimize fluid and electrolyte loss
- May allow patient to be weaned off of TPN and IVF
- Reduces volume of skin irritant

- Methods to reduce fistula output
 - Restrict hypo-osmolar fluids
 - Encourage electrolyte mix
 - Antisecretory agents
 - Protein pump inhibitors
 - Somatostatin or octreotide
 - Antimotility agents

 - ⇔ Codeine

Control of Fistula Output

- Somatostatin infusion reduces fistula output
 - May be associated with higher fistula closure rate and shorter time to spontaneous closure
 - ☼ Limited by short half life (1-3 minutes)
- Octreotide has a half life of 2 hours
 - **⇔** Can reduce fistula output 40-90%
 - ☼ Reduction of time to fistula closure from 50 days to 5-10 days
 - Does not improve overall rate of fistula closure
 - May increase intestinal atrophy

Randomized Controlled Trials

Reference	Treatment	No. of patients	Closure (%)	Time to closure (days)	Mortality rate (%)	Comments
lsenmann et al. ⁷²	Somatostatin	25	78	13	N.A.	53% pancreatobiliary fistulas. Closure
	Control	20	19	19	N.A.	assessed at day 14
Torres et al. ⁷¹	Somatostatin	20	85	14	N.A.	
	Control	10	81	20	N.A.	
Leandros et al.55	Somatostatin	19	84†	N.A.	N.A.	
	Octreotide	17	65†	N.A.	N.A.	
	Control	15	27	N.A.	N.A.	
Hernandez-Aranda et al.51*	Octreotide	40	65	18	25	
	Control	45	56	27	31	
Jamil et al.52	Octreotide	16	94	N.A.	N.A.	Excluded cases unlikely to close
	Control	17	82	N.A.	N.A.	spontaneously. Closure assessed at day 21
Sancho et al.58	Octreotide	14	57	N.A.	14	Closure assessed at day 20
	Control	17	35	N.A.	12	·
Scott et al.59	Octreotide	11	9	N.A.	N.A.	Closure assessed at day 12
	Control	8	38	N.A.	N.A.	·

Control of Fistula Output

- - Reduces fistula output
 - Does not improve overall rate of closure
- Octreotide and lanreotide act on a limited range of somatostatin receptors
 - May differ from somatostatin in pharmacologic effect

- Control of infection with antibiotics
 - Many ECF associated with intra-abdominal abscess which should be drained percutaneously
- Nutritional support to correct catabolic consequences of ECF
 - Enteral feedings are preferred
 - Preserve intestinal mucosal barrier
 - Preserve gut hormonal and immunologic function
 - Avoid problem of line sepsis
 - If enteral feeding is not possible, use TPN

Nutritional support

- Significant loss of protein, fluid, and electrolytes in the fistula effluent, especially with high output
- ☼ Incidence of malnutrition is 20% with colonic fistula and 74% with jejunal or ileal fistula
- ☼ Patients with optimal nutritional support have higher fistula closure rate (89 vs 37%) and decreased mortality
- ☼ Nutrition should be optimized with a combination of oral intake, tube feeding, and parenteral nutrition
- High output fistula: need 30kcal/kg/day and 1.5 g/kg/day protein

Enteral vs Parenteral Nutrition

- ☼ Is NPO and bowel rest beneficial or detrimental?
- Widespread availability of PN in the 1970's reduced incidence of malnutrition
- **☼** TPN reduces GI secretions by 30-50%
- Helps with fluid and electrolyte balance
- Does not improve rate of spontaneous closure
- Does allow time for fistula to close or nutrition to be optimized before surgery
- Enteral elemental diet may reduce fistula output by as much as TPN

Enteral vs Parenteral Nutrition

- ☼ Critical care literature has demonstrated reduced incidence of infection in those receiving enteral nutrition
 - No change in overall mortality
- TPN may induce small intestinal mucosal atrophy allowing translocation of bacteria
- Early enteral feeding after elective GI surgery has been shown to be superioir to NPO regimens
 - Lower complication rate and shorter hospital stay

Enteral vs Parenteral Nutrition

- There is no Level 1 evidence to favor either
- Enteral nutrition is cheaper and easier
 - May not be possible due to feeding intolerance, inability to access GI tract, or high fistula output
- Some studies have shown TPN to improve spontaneous closure rate
 - Probably in malnourished patients

When to operate?

- **⇔** Spontaneous closure is unlikely after 2 months
- Major surgery stimulates dense adhesions, especially when associated with intra-abdominal sepsis
 - Worst between 3 weeks and 3 months
 - With open abdomens, 6-12 months
 - Surgery during this time likely to be complicated by fistula recurrence
- Delayed surgery allows time to correct metabolic and nutritional deficiencies

Christopher Lau's Recommendations for Managing a Low Output Enterocutaneous Fistula

- 1. Resuscitate volume and replace electrolytes as needed
- 2. Control sepsis with antibiotics and percutaneous drainage as needed
- 3. Localization and definition of anatomy with CT/fistulogram
- 4. Proper skin protection and control of fistula effluent
- 5. Optimize nutritional support
 - Enteral feeding if possible
 - **☼** Parenteral supplementation if needed
- 6. If fistula is not closed in 6-8 weeks, plan for surgery
- 7. Definitive surgery after at least 3 months, preferably 6 months

References

- Schecter WP. Management of enterocutaneous fistulas. Surg Clin North Am. 2011 Jun;91(3):481-91.
- Stevens P, et al. Systematic review and meta-analysis of the role of somatostatin and its analogues in the treatment of enterocutaneous fistula. Eur J Gastroenterol Hepatol. 2011 Oct;23(10):912-22.
- Dorta G. Role of octreotide and somatostatin in the treatment of intestinal fistulae. Digestion 1999;60(Suppl 2):53–6.
- Schecter WP. Enteric fistulas: principles of management. J Am Coll Surg. 2009 Oct;209(4):484-91. Epub 2009 Jul 2.
- Joyce MR, Dietz DW. Management of complex gastrointestinal fistula. Curr Probl Surg. 2009 May;46(5):384-430.
- Draus JM Jr. Enterocutaneous fistula: are treatments improving? Surgery. 2006 Oct;140(4):570-6; discussion 576-8. Epub 2006 Sep 6.
- Lloyd DA. Nutrition and management of enterocutaneous fistula. Br J Surg. 2006 Sep;93(9):1045-55.