Complications of Central Venous Catheterization

Ogori N. Kalu, MD
Kings County Hospital Center
December 29, 2006
Case History

8/23/06 545pm: 17F restrained backseat passenger of a van involved in a 30 mph head on collision with another vehicle arrived at KCHC ER.
Afebrile BP 116-149/52-90 HR 160s, restless
CXR, Pelvic XR neg

Medical History: Cornelia de Lange Syndrome
Mental retardation, seizures
Observed in ER over 6hrs; by 1100pm patient decompensated:
T101.9 BP 63/52 HR 130s Oxy Sat 85-89% on FM
Intubated by anesthesia, unresponsive to fluid challenges
Case History, cont’d.

ABG: 7.29/28/542/99/15 /-12.2 lactate 5.8 WBC 7.2

Started on Levophed;

100am Trauma consult called

Physical Exam: short stature, microcephaly, cleft palate, hirsutism, intubated, sedated
Tachycardic

Lungs: CTAB
Abdomen: tense, distended, bowel sounds; +seatbelt sign with RLQ bruising
Rectal: no gross blood
200am: Emergent laparotomy

Findings: gross intraabdominal contamination
- cecal perforation, ileocolic mesenteric injury, ileal perforation: ileocecectomy with primary stapled anastamosis
- sigmoid blowout: resection and Hartman’s Procedure

EBL: 200 ml

Replacements: 1 U PRBCs, 3 L crystalloid

Post Op: intubated, pressors, SICU
Post op Course

Cardiac arrest within hours post op
ACLS protocol, successfully resuscitated
Right subclavian TLC
Continued labile bp despite pressors

POD #1:
Head CT negative; C-spine CT negative
Chest CT: b/l PTX
Abd/Pelv CT post op changes, L5 vertebral body fracture
Post op course, cont’d

POD #11: remains in SICU on mechanical ventilation. Off pressors, hemodynamically stable.

Attempted right subclavian central venous catheter change over wire
Hospital course

Catheter tip retrieved by IVR

POD#13: extubated, placed on BIPAP at night

POD #19: transferred out of SICU to Pediatric service

Discharged to facility 3 months post op

Currently admitted to Peds service for dehydration due to high colostomy output
Complications of Central Venous Access

More than 5 million CVC inserted per year

Hemodynamic monitoring
Vascular Access: Fluid resuscitation, Hemodialysis, TPN
Administration of medications

Routes: internal jugular, subclavian, femoral veins

(Bowyer MW, Bonar JP Noninfectious complications of invasive hemodynamic monitoring in the ICU. Complications in ICU: Recognition, Prevention & management. 1997)
Central Venous Catheters

More than 15% have complications:
- mechanical 5-19%
- infectious 5-26%
- thrombotic 5-26%

Table 2. Frequency of Mechanical Complications, According to the Route of Catheterization.*

<table>
<thead>
<tr>
<th>Complication</th>
<th>Internal Jugular</th>
<th>Subclavian</th>
<th>Femoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial puncture</td>
<td>6.3–9.4</td>
<td>3.1–4.9</td>
<td>9.0–15.0</td>
</tr>
<tr>
<td>Hematoma</td>
<td><0.1–2.2</td>
<td>1.2–2.1</td>
<td>3.8–4.4</td>
</tr>
<tr>
<td>Hemothorax</td>
<td>NA</td>
<td>0.4–0.6</td>
<td>NA</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td><0.1–0.2</td>
<td>1.5–3.1</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>6.3–11.8</td>
<td>6.2–10.7</td>
<td>12.8–19.4</td>
</tr>
</tbody>
</table>

* Data are from Merrer et al.,5 Szajdor et al.,6 Mansfield et al.,8 Martin et al.,22 Durbec et al.,23 and Timsit et al.24 NA denotes not applicable.
Internal Jugular Access

EJV → IJV
Internal Jugular Cannulation

- Clavicle
- Sternal notch
- Subclavian vein and artery
- Common carotid artery (under muscle)
- Internal jugular vein
- Sternocleidomastoid muscle
- Syringe
Subclavian Approach
Femoral Anatomy

Key
N nerve
A artery
V vein
E empty space
L lymphatics

common iliac artery
internal iliac artery
external iliac artery
femoral artery

deep artery of the thigh
lateral circumflex femoral artery
medial circumflex femoral artery

William Scavone ©2003
Complications

<table>
<thead>
<tr>
<th>PTX</th>
<th>Airway injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial puncture</td>
<td>Thrombosis</td>
</tr>
<tr>
<td>Hematoma</td>
<td>Air Embolism</td>
</tr>
<tr>
<td>Infection</td>
<td>Catheter malposition</td>
</tr>
<tr>
<td>Dysrhythmias</td>
<td>Nerve injury</td>
</tr>
<tr>
<td>Vascular/cardiac perf</td>
<td>Thoracic duct injury</td>
</tr>
</tbody>
</table>
Pneumothorax

Subclavian catheters
Up to 6% of complications
Pleuritic chest pain, dyspnea, diminished breathe sounds, tracheal deviation, hypotension
Up to 50% of patients are asymptomatic
Risk of developing into tension PTX

RULE OUT PTX WITH CXR AFTER FAILED ATTEMPTS

Prevention: patient position, proper supervision, alternate approach based on pt’s history and habitus
Arterial Puncture

Up to 19% of complications
May be obscured by hypotension and hypoxemia
Hematoma
Risk of bleeding

Prevention: Identify landmarks, ultrasound
ABG, no dilator
Avoid subclavian in patients with coagulopathy
Infection

Infection of exit site with migration of pathogen along external surface
Hub contamination, intraluminal contamination
Hematogenous seeding

Prevention: use of antimicrobial impregnated catheters
subclavian approach
avoid routine catheter changes
A central venous catheter in place for at least 3 days and at least one of the following: suspected infection without another confirmed source, signs of sepsis, sepsis, septic shock, or exit-site infection.

- **Catheter needed?**
 - No: Order two blood cultures. Continue evaluation for infection.
 - Yes: Order two blood cultures.

- **Exit-Site Infection**
 - Remove catheter
 - Insert new catheter at new site
 - Start empirical antibiotics if septic or septic shock is present

- **Catheter site infected?**
 - Yes: Start empirical antibiotics
 - No: Start empirical antibiotics

- **Septic or septic shock?**
 - Yes: Source of infection other than catheter probable?
 - No: Change catheter over guide wire. Culture catheter tip

- **Catheter Infection Unlikely**
 - Continue evaluation for other sources of infection.

- **Tip culture positive?**
 - No: Tip culture positive?
 - Yes: Blood cultures positive?

- **Catheter Colonization**
 - Remove catheter and insert new catheter at new site (if not already done).
 - Antibiotics are not indicated.

- **Catheter-Related Bloodstream Infection**
 - Remove catheter and insert new catheter at new site (if not already done).
 - Antibiotics are indicated.
 - Tailor antibiotics to the sensitivity of organisms.
 - Treat for 10-14 days.
Thrombosis

Virchow’s triad: local trauma, stasis, hypercoagulability
Thrombotic material at catheter tip
Risk of limb ischemia, rare
Increased in females and patients with PVD
Predisposing factors: low flow state, dehydration, sepsis, hypercoagulable

Edvisinghe NK, et al. iatrogenic Vascular Lesions: *Surgical Perspective* 2003
Thrombosis, cont’d.

Catheter related thrombosis:
- 21.5% Femoral vein catheter
- 1.9% Subclavian vein catheter

Risk is 4X greater in IJ compared to SVC

Prevention: subclavian catheter, avoid trauma to vein

Catheter Malposition
Other Complications

Catheter/guidewire fragmentation and embolization

Loss of guidewires

Catheter/guidewire kinking or knotting
<table>
<thead>
<tr>
<th>Type of Complication and Intervention</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious</td>
<td></td>
</tr>
<tr>
<td>Use antimicrobial-impregnated catheters</td>
<td>The use of antimicrobial-impregnated catheters reduces the risk of catheter-related bloodstream infections and reduces costs when the rate of catheter-related bloodstream infection > 2%9−11</td>
</tr>
<tr>
<td>Insert catheters at the subclavian venous site</td>
<td>The risk of catheter-related infection is lower with subclavian catheterization than with internal jugular or femoral catheterization6,9,12,13</td>
</tr>
<tr>
<td>Use maximal sterile-barrier precautions during catheter insertion</td>
<td>Use of a mask, cap, sterile gown, sterile gloves, and large sterile drape reduces the rate of infections and reduces costs14</td>
</tr>
<tr>
<td>Avoid the use of antibiotic ointments</td>
<td>The application of antibiotic ointments increases the rate of colonization by fungi,15 promotes the development of antibiotic-resistant bacteria,16 and has not been shown to affect the risk of catheter-related bloodstream infections17</td>
</tr>
<tr>
<td>Disinfect catheter hubs</td>
<td>Catheter hubs are common sites of catheter contamination18</td>
</tr>
<tr>
<td>Do not schedule routine catheter changes</td>
<td>Scheduled, routine replacement of central venous catheters at a new site does not reduce the risk of catheter-related bloodstream infection19,20; scheduled, routine exchange of catheters over a guide wire is associated with a trend toward increased catheter-related infections19</td>
</tr>
<tr>
<td>Remove catheters when they are no longer needed</td>
<td>The probability of colonization and catheter-related bloodstream infection increases over time9,10,21</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Recognize risk factors for difficult catheterization</td>
<td>A history of failed catheterization attempts or the need for catheterization at sites of prior surgery, skeletal deformity, or scarring suggests that catheterization may be difficult8</td>
</tr>
<tr>
<td>Seek assistance from an experienced clinician</td>
<td>Insertion by a physician who has performed ≥50 catheterizations is half as likely to result in a mechanical complication as insertion of a catheter by a physician who has performed <50 catheterizations8</td>
</tr>
<tr>
<td>Avoid femoral venous catheterization</td>
<td>The frequency of mechanical complications with femoral catheterization is higher than with subclavian or internal jugular catheterization2,8,22−24; the rates of serious complications are similar with the femoral and subclavian approaches5</td>
</tr>
<tr>
<td>Use ultrasound guidance during internal jugular catheterization</td>
<td>The use of ultrasound guidance during internal jugular catheterization reduces the time required for insertion and reduces the rates of unsuccessful catheterization, carotid-artery puncture, and hematoma formation23,25</td>
</tr>
<tr>
<td>Do not schedule routine catheter changes</td>
<td>Scheduled, routine replacement of catheters at new sites increases the risk of mechanical complications19,37</td>
</tr>
<tr>
<td>Thrombotic</td>
<td></td>
</tr>
<tr>
<td>Insert the catheter at the subclavian site</td>
<td>Subclavian catheterization carries a lower risk of catheter-related thrombosis than femoral or internal jugular catheterization5,24</td>
</tr>
</tbody>
</table>
Conclusion

Most complications associated with central venous catheterization are iatrogenic and therefore preventable.

Strict adherence to safe and sterile insertion techniques

Appropriate credentials required prior to performing any invasive procedure; proper supervision is mandatory

Removal of all catheters as soon as possible