Graves’ Disease
-Management and Surgical Indications-

BY: SVETLANA KLEYMAN, MD (PGY 4)
SUNY DOWNSTATE
52 year old male with a recent diagnosis of Graves’ and hypertension was referred from Thyroid clinic for thyroidectomy.

Chief complaints: The patient complained of neck swelling, difficulty breathing, and a choking sensation for two months. The patient also noted that his eyes were enlarged.

The patient was recently started on Methimazole for symptoms of anxiety, tremors, and nervousness.
Case Presentation

History

Medical:
- Graves’ Disease,
- Hypertension

Surgical: none

Allergies: NKDA

Medications:
- Methimazole
- Metoprolol
- Amlodipine
- Hydrochlorothiazide

Exam

Eyes: proptosis, periorbital edema, lid retraction

Neck: diffusely enlarged, nodular thyroid, non tender

Heart: RRR

Lungs: CTAB
Case Presentation

- Pre-Operative Studies
Thyroid Ultrasound: Right lobe of the thyroid is markedly enlarged 12 x5x5.6 cm, Left lobe 11x5x4.5 cm.
Pre-operative studies

CT Neck:
- Diffuse enlargement of thyroid gland.
- Right lobe:
 12.3 x 5.2 x 6.3 cm
- Left lobe:
 11.7 x 5.5 x 6.6 cm.
- Mild displacement of the trachea posterior and right
Case Presentation

- Pre-Op Thyroid Function tests:
 (patient’s Methimazole titrated until patient was euthyroid)
 - TSH 0.24
 - FT4 0.4
 - T4 1.8

- Pre-Op Preparation
 - Continued on Metoprolol
 - Prescribed Lugols Solution to start taking 10 days pre-operatively
Case Presentation

- Operation
 - Awake intubation using a bronchoscope
 - Total thyroidectomy
 - Nerve monitor used

- Pathology
 - Thyroid (400 G): Symmetrical enlargement, diffuse hypertrophy and hyperplasia of the follicular cells. Consistent with Graves’ Disease.
Post operative course:

- The patient was kept intubated post operatively and desaturated on POD #2, CXR demonstrated a right lower lobe pneumonia. Patient started on antibiotics.
- Respiratory failure did not improve and patient diagnosed with pulmonary embolism on CTA. Started on Lovenox.
- Required tracheostomy.
- Currently tracheostomy is capped and patient is eating.
Questions??
Outline

• Introduction
• Clinical Features
• Diagnosis
• Medical Management
• Radioactive Iodine
• Surgical Management
• Summary
• Questions
Introduction to Graves’ Disease

- Described by Robert Graves in the 1830’s as a diffuse toxic goiter associated with exophthalmos and palpitations
- Female predominance (5-7 x higher than men)
- Familial predisposition
- Peak incidence between age 40-60
Introduction to Graves Disease

- Autoimmune disease with unknown etiology

- Possible etiologies of the initiation of the immune process: postpartum state, iodine excess, lithium therapy, bacterial and viral infections

- Hyperthyroidism is caused by stimulatory autoantibodies to the TSH-R

- Thyroid stimulating antibodies stimulate the thyrocytes to grow and synthesize excessive thyroid hormone.
Clinical Features

Presentation of Graves’ Disease:

- Goiter
- Ophthalmopathy
- Dermopathy
- Symptoms of Hyperthyroidism
Goiter
- Thyroid gland 2-3 x larger
- Diffuse enlargement
- Smooth, firm, rubbery
- May have a bruit or thrill

Dermopathy (2%)
- Infiltrative skin manifestations
- Pretibial myxedema
- Deposition of glycosamines into the skin resulting in thickening
Clinical Features

- **Ophthalmopathy (50%)**
 - Lid lag
 - Proptosis
 - Periorbital edema
 - Prominent stare
 - Spasm of upper eyelid

- **Etiology**
 - Orbital fibroblasts and muscles are thought to share a common antigen TSH-R. There is inflammation of the periorbital fibroblasts.
Clinical Features

- **Hyperthyroidism**
 - Tachycardia
 - Heat intolerance
 - Palpitations
 - Hyperhydrosis
 - Nervousness
 - Fatigue
 - Emotional lability
 - Tremors
 - Increased BMs
 - Diarrhea
 - Weight loss
 - Fatigue

Others: gynecomastia, onycholysis, atrial fibrillation
Diagnosis

- **Laboratory work up:**
 - Suppressed TSH
 - +/- elevated T4 and T3 levels

- **Iodine uptake scan:**
 - Elevated uptake
 - Diffusely enlarged gland
Management of Graves’ Disease

Medical Therapy
- Anti-thyroid drugs
- Beta-blockers
- Lugol’s Solution

Radioactive Iodine

Surgery
- Total thyroidectomy
- Subtotal thyroidectomy
Medical Management

- **Anti-Thyroid Medications**
 - High incidence of failure (40-80% develop recurrence in 1-2 years)
 - Usually administered in preparation for iodine ablation or surgery
 - Curative intent indicated in:
 - small non toxic goiters
 - mildly elevated hormone levels
 - patients who experience rapid remission with reduction of thyroid gland
Antithyroid Medications (Continued)

- Options: Propylthiouracil (PTU), Methimazole

- Action: both reduce thyroid hormone production by inhibiting organic binding of iodine and coupling of iodotyrosines

- PTU decreases the peripheral conversion of T4 to T3, used in pregnant women
- **Antithyroid Medications (Continued)**

 - Side Effects: rash, joint pain, liver inflammation, and agranulocytosis (0.1-0.3%)

 - Medications titrated to normalize serum levels of T4 and T3 and maintain TSH in normal range.

 - Symptoms improve by 2-3 weeks and patients are euthyroid by 6 weeks
Medical Management

- **Beta-Blockers**
 - Block adrenergic signaling which is potentiated in hyperthyroidism

 - Commonly used agents: Propranolol, atenolol, metoprolol

 - Propranolol additionally has the ability to inhibit peripheral conversion of T4-T3

 - Important for patients with significant sympathetic symptoms (tremor, tachycardia, sweating). Symptoms improve in 1-2 days.
Radioactive Iodine Therapy (131I)
Advantages: avoidance of surgery, reduced treatment cost, ease of treatment

Indications:
- Older patients
- Small to moderate sized goiters
- Patients who relapsed after medical/surgical therapy

Contraindications
Absolute
- Women who are pregnant or breastfeeding

Relative
- Young patients
- Thyroid nodules
- Ophthalmopathy
Radioactive Iodine Therapy (¹³¹I)
- Antithyroid drugs are given until patient is euthyroid, then discontinued 3-7 days before therapy to maximize uptake.

- The dose of ¹³¹I is calculated based on the size of the gland and an uptake scan and then it is administered orally.

- After treatment, patients become euthyroid within 2 months (only 50% euthyroid after 6 months).

- Side effects: radiation thyroiditis and neck tenderness, possible worsening of opthalmopathy.
Indications for Surgery

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspicious/Malignant nodules</td>
<td>Poor compliance with medications</td>
</tr>
<tr>
<td>Pregnant patients uncontrolled on medications</td>
<td>Rapid control of symptoms is needed</td>
</tr>
<tr>
<td>Patients wishing to become pregnant</td>
<td>Severe Graves’ Ophthalmopathy (iodine ablation may aggravate)</td>
</tr>
<tr>
<td>Compressive symptoms</td>
<td>Large thyroid glands+low iodine uptake</td>
</tr>
<tr>
<td>Children</td>
<td></td>
</tr>
</tbody>
</table>
Advantages of Surgery

- Resolution of Graves hyperthyroidism is most rapid with surgery

- Most patients can be prepared for surgery in less than 6 weeks

- Surgery is curative and definitive in almost 100% of patients.
 (Recurrence rates are less than 1% with total thyroidectomy)

- Other reasons: Cosmesis, Salvage after failed therapy, less costly
Surgical Management

- **Disadvantages of Surgery**
 - Nerve injury (damage can result in vocal cord dysfunction in up to 5% of patients)
 - Parathyroid compromise (permanent hypoparathyroidism in up to 4% patients)
 - Bleeding or infection
 - Hypothyroidism
Preparation for surgery:
- Before surgery the patient must be rendered euthyroid by the use of PTU or Methimazole.
- Beta Blockers can be administered to control catecholamine response in patients with thyrotoxic symptoms.
- Lugol’s solution can be added 10 days to 2 weeks before the operation to decrease vascularity of thyroid gland.
Lugol’s Solution (Iodine + Potassium Iodide)

- Actions: acute inhibition of thyroid hormone synthesis and release, reduces vascularity of the thyroid gland

- Administered for rapid reduction in thyroid hormone levels in patients with severe cardiac disease, thyroid storm, or in preparation of surgery.

- Conflicting opinions regarding the use of Lugol’s solution - no agreement on its effectiveness
Effect of Lugol Solution on Thyroid Gland Blood Flow and Microvessel Density in the Patients with Graves’ Disease

Yeşim Erbil, Yasemin Ozluk, Murat Giriş, Artur Salmashoglu, Halim Issever, Umut Barbaros, Yersu Kapran, Selçuk Özarmağan, and Serdar Tezelman

Departments of General Surgery (Y.E., U.B., S.O., S.T.), Pathology (Y.O., Y.K.), Biochemistry (M.G.), Radiology (A.S.), and Public Health (H.I.), Istanbul Medical Faculty, Istanbul University, 34093 Capa/Istanbul, Turkey
Review of the literature:

- **Objective:** Evaluate the effectiveness of Lugol’s solution ability to decrease thyroid gland vascularity and intraoperative blood loss in patients with Graves disease.

- **Methods:** 36 patients randomized to receive or not receive Lugol’s pre-operatively

- **Measures:** Blood flow through thyroid arteries was measured by doppler, microvessel density assessed by the level of expression of CD-34 in thyroid tissue
• Review of the literature (continued):

Results

- The mean *blood flow* and *blood loss* in the (+) Lugol’s solution group were significantly lower than the (-) Lugol’s group.

- The mean CD-34 expression (determined by western blot) was lower in the (+) Lugols group than the (−) Lugol’s group.

- Lugol solution treatment resulted in decreases in blood flow, blood loss, and microvascular density.
Definitions:

Total Thyroidectomy = division of all thyroid tissue between the entrance of the recurrent laryngeal nerve bilaterally at the ligament of Berry. Complete removal of all visible thyroid tissue.

Near Total Thyroidectomy = complete dissection on one side while leaving a remnant of thyroid tissue laterally on the other side, which incorporates the parathyroid.

Subtotal Thyroidectomy = leaves a rim of thyroid tissue bilaterally to ensure parathyroid viability and avoid the recurrent laryngeal nerve.
- **Total Thyroidectomy**

 Technique

- Branches of the inferior thyroid artery are divided at the surface of the thyroid gland

- Inferior thyroid veins then ligated and divided

- The Recurrent laryngeal nerve is vulnerable

- The ligament of Berry is then divided
Total Thyroidectomy is Recommended for:
- Patients with co-existent thyroid malignancy
- Severe ophthalmopathy
- Patients unwilling to accept a reoperation for recurrence
- Patients who refuse radioactive iodine
Surgical Management

Subtotal Thyroidectomy

- Technique:
 - parathyroids, inferior thyroid artery, and recurrent laryngeal nerve identified
 - The line of resection is selected to preserve the parathyroid glands
 - Recurrent laryngeal nerve protected

Thyroid tissue divided using harmonic scalpel
- **Subtotal Thyroidectomy**
 - Recommended for the majority of patients
 - Adults: 4-7 g remnant, Children: <3 g remnant
 - Remnants > 8 g decreases risk of post op hypothyroidism, but increase incidence of persistent or recurrent disease
 - Remnants <3 g have a 40% risk of hypothyroidism
Graves disease has thyroidal and extrathyroidal manifestations

Management options are: antithyroid medications, radioiodine ablation, surgery

Patient must be euthyroid preoperatively

Two primary surgical options are total vs. subtotal thyroidectomy

Question #1

Which of the following is not an acceptable indication for surgical treatment of hyperthyroidism?

A. A nodule confirmed or suspicious for malignancy
B. Non compliance with medical management
C. Multinodular goiter
D. Age younger than 15 years old
E. Severe Graves ophthalmopathy

Answer: C
Pre-operative preparation of patients with Graves’ disease should include all of the following except?

A. Thyroid Ultrasound
B. Pre-operative beta blockade
C. Achievement of euthyroid state through use of antithyroid drugs
D. Administration of supersaturated potassium iodide or lugol’s solution 10 days before surgery
E. Lithium

Answer: E