Hirschsprung’s Disease
A congenital condition characterized by the absence of ganglion cells in the submucosal (Meissner’s) and myenteric (Auerbach’s) plexus of the distal small bowel

- The length of intestine involved varies

- Functional obstruction results
History

- 1691: First description of megacolon in children by Ruysch, a Dutch anatomist
- 1886: Pathologic features described by Harold Hirschsprung at Berlin Society of Pediatrics
 - “Constipation in Newborns Due to Dilatation and Hypertrophy of the Colon”
- 1901: Tittel identified absence of ganglion cells in the distal colon of a child with Hirschsprung’s disease
 - First insight into pathogenesis
History

- 1938: Robertson and Kernohan defined the association of distal aganglionos and intestinal obstruction
- 1946: Ehrenpreis first to appreciate that colon became secondarily dilated owing to distal obstruction
- 1948: Swenson and Bill reported the first definitive operation for this condition
 - First to advocate full-thickness rectal biopsy for definitive diagnosis
Declining mortality rates:

- **1954:** Klein and Scarborough reported a 70% mortality rate
 - Mean age at diagnosis 45 months
- **1966:** Shimm and Swenson reported a 33% mortality rate
 - Mean age at diagnosis 6 months
- **1992:** Rescorla reported a 6% mortality rate
- **2000:** Teitelbaum reported a 1% mortality rate
Statistics

- Incidence approximately 1 in 5000 live births
- Male to female ratio 4:1
- Disease restricted to the rectosigmoid junction in 75%
- 20% have associated abnormalities: Down syndrome (8%), cardiac defects (8%), genitourinary abnormalities (6%), gastrointestinal abnormalities (4%)
Total colonic aganglionosis
Short segment aganglionosis
Neuronal intestinal dysplasia
Pathogenesis

- Inherited disorder with incomplete penetrance and variable expressivity
- Believed to be a defect of craniocaudal migration of neuroblasts originating from the neural crest
 - Normally complete by 12th week of gestation
- The earlier the migration arrest, the longer the aganglionic segment

Pathogenesis

Other hypotheses include defects of neuroblast differentiation into ganglion cells and accelerated ganglion cell destruction within the intestines
Pathogenesis: Genetics

- *RET* proto-oncogene strongly associated with Hirschsprung’s by family studies
 - Located on long arm of chromosome 10
 - Encodes a receptor tyrosine kinase
 - Mutated in 20% of Hirschsprung’s cases
 - Also mutated in MEN-2; higher incidents of Hirschsprung’s in these patients

Pathogenesis: Genetics

- Glial cell line-derived neurotrophic factor (GDNF) is a RET receptor ligand
 - Mutations in the GDNF gene may account for additional Hirschsprung’s cases

- Other genes identified:
 - Endothelin 3
 - Endothelin B receptor
 - Endothelin converting enzyme 1
 - SOX10 transcription factor

Pathogenesis: Genetics

- Known genetic mutations associated with Hirschsprung’s Disease:

<table>
<thead>
<tr>
<th>Predominant Name</th>
<th>Model or Human</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endothelin receptor B gene</td>
<td>Mouse and rat, Humans</td>
<td>13q22</td>
</tr>
<tr>
<td>Endothelin-3 gene</td>
<td>Mouse and rat, 2 human cases</td>
<td>20q13.2-q13.3</td>
</tr>
<tr>
<td>SOX10/sox10 gene</td>
<td>Mouse, Human</td>
<td>22q12-q13</td>
</tr>
<tr>
<td>Ret proto-oncogene</td>
<td>Mouse, Humans</td>
<td>10q11.2</td>
</tr>
<tr>
<td>GDNF gene</td>
<td>Mouse, Humans</td>
<td>5p12-p13.1</td>
</tr>
<tr>
<td>Neuturin</td>
<td>Mouse, Humans</td>
<td>2q22-q23</td>
</tr>
<tr>
<td>Not identified LICAM gene</td>
<td>Human, Humans</td>
<td>20p11.22-p11.23 Exon 18 of LICAM gene</td>
</tr>
</tbody>
</table>
Diagnosis

Should be suspected in:

- any infant who doesn’t pass meconium within the first 24 hours of life
- newborn intestinal obstruction
- constipation / chronic abdominal distention in the first year of life
Diagnosis

Differential diagnosis:

- Includes all causes of mechanical and functional bowel obstruction in the neonate:
 - Mechanical obstruction:
 - Meconium ileus
 - Meconium plug syndrome
 - Neonatal small left colon syndrome
 - Malrotation with volvulus
 - Incarcerated hernia
 - Jejunoileal atresia
 - Colonic atresia
 - Intestinal duplication
 - Intussusception
 - NEC
Differential diagnosis:

- Includes all causes of mechanical and functional bowel obstruction in the neonate:
 - Functional obstruction:
 - Sepsis
 - Intracranial hemorrhage
 - Hypothyroidism
 - Maternal drug ingestion or addiction
 - Adrenal hemorrhage
 - Hypermagnesemia
 - Hypokalemia
Diagnosis

- Workup:
 - Physical exam, including rectal exam
 - Abdominal plain films
Diagnosis

- **Workup:**
 - Barium enema
 - In normal patients the caliber of the rectum should be equal to or greater than the rest of the colon
 - Hallmark finding is conical transition from distal nondilated colon or rectum to proximal dilated colon
Diagnosis

Workup (continued)

- Anorectal manometry
 - High pressure peristalsis in proximal ganglionic bowel
 - Lack of progressive peristalsis in a normal pressure zone lacking ganglion cells
 - Failure of relaxation of rectal sphincter in response to rectal distention
 - Rarely used as primary diagnostic modality. Valuable for evaluating functional results after reconstructive procedures
Diagnosis

- Workup (continued)
 - Biopsy
 - Full thickness biopsy gold standard. However, requires general anesthesia
 - Suction biopsy popular. Requires skilled pathologists and adequate specimen
 - Biopsy samples should be 2 to 3 cm above dentate line
Management

- Depends on prompt diagnosis and early treatment

- Initial management:
 - Prompt decompression with large-bore rectal tube with side holes
 - *Serial* washouts several times a day
 - Broad spectrum antibiotics, IV fluids
Enterocolitis

- Most feared complication of Hirschsprung’s disease
- Responsible for much of the associated mortality
- Etiology not yet elucidated
 - Several infectious agents and mucosal defensive elements have been investigated
Enterocolitis

Clinical signs and symptoms:

- Early: Abdominal distention, borborygmus, diarrhea
- May progress to fever, emesis, explosive diarrhea, fluid/electrolyte disorders, gram-negative sepsis, colonic perforation
Management

Dictated by presence or absence of enterocolitis

- Enterocolitis mandates emergent diverting colostomy
- Historically right transverse colostomy performed in all
 - Advantages: Faster (no intraop frozen sections required), protects subsequent pullthrough
 - Disadvantage: Three trips to OR needed
- Transition-zone colostomy now favored
One-stage procedure has gained favor

- First successful report by So et al in 1980
- Preparation:
 - Serial saline rectal washouts
 - Digital rectal dilatations
 - Last preop rectal washout with 1% neomycin
 - IV antibiotics for entire perioperative period

Management

- One-stage procedure:
 - Safe, cost-effective, avoids ostomy complications\(^1\)
 - However, relatively few data available regarding long-term outcome (particularly stooling patterns)
 - Level of aganglionosis established with frozen section
 - Role of pathologist pivotal to success of one stage approach

Management

- One-stage procedure:
 - Accepted contraindications include:
 - Enterocolitis with poor clinical patient status
 - Delayed diagnosis with resulting proximal dilatation
 - Down’s Syndrome
 - Often cited as contraindication due to early reports of increased complication and mortality rates
 - This has been disputed\(^1\)

Definitive Procedures

- Success depends on the ability to place bowel that contains ganglion cells within 1 cm of the anal verge.
- All currently utilized procedures have produced good results. All have produced complications.
- Surgeon experience and bias affect results.
Definitive Procedures
Definitive Procedures
Definitive Procedures
Conclusion

- Hirschsprung’s disease is a defined clinical entity with an unclear etiology.
- Successful management depends on early diagnosis, surgical expertise, and multidisciplinary support.
- Current trends are toward one-stage management but definitive supportive evidence is lacking.