Management of Carotid Disease

CHRISTOPHER LAU
PGY-3
BROOKLYN VA
SUNY DOWNSTATE MEDICAL CENTER
Case

- 61 year old male referred to Vascular Surgery for left internal carotid stenosis
- Present with transient right hand numbness several months earlier
- No motor weakness or deficits
- No other sensory loss
- No aphasia
- No visual changes
- No LOC, slurred speech, or memory loss
Past Medical History

- Hypertension
- HIV – on HAART
- Hepatitis C
- Hyperlipidemia
- DVT – completed treatment with coumadin
- Head injury in MVA 1992
- Right shoulder, left leg, left elbow surgery

Medications: amlodipine, Atripla, HCTZ, valsartan, aspirin 81 mg

SH: + tobacco
Physical Exam

- Vital Signs normal
- HEENT: PERRL, EOMI
- Neck: no bruits
- CVS: S1S2, RRR, no murmurs
- Chest: CTA b/l
- Abdomen: soft, NT, ND, no pulsatile mass
- Extremities: no ulcerations, no edema
- Pulses: femoral pulses palpable, no palpable popliteal, DP or PT b/l
- Neuro: no focal motor or sensory deficits, no cranial nerve deficits
Imaging

- **Carotid duplex**
 - Left ICA >70% stenosis to near total occlusion
 - Right ICA <50% stenosis

- **MRI brain**
 - Left frontotemporal traumatic encephalomalacia
 - Chronic left basal ganglia lacunar infarct

- **MRI neck**
 - Severe focal stenosis of left ICA 1.5 cm distal to bifurcation
Carotid Doppler

FR 22Hz 60°
R1

2D
62%
C 50
P Low
Gen
CF
77%
3000Hz
WF 165Hz
Med

L Prox ICA
PSV -150 cm/s
EDV -50.5 cm/s

3.5-
Carotid Doppler

FR 22Hz 60°
R1
2D
63%
C 50
P Low
Gen
CF
75%
3000Hz
WF 165Hz
Med

L Mid ICA
PSV -484 cm/s
EDV -198 cm/s
Carotid Doppler

FR 22Hz 60°
R1

ZD 63%
C 50
P Low
Gen
CF 75%
3000Hz
WF 165Hz
Med

L Dist ICA
PSV -478 cm/s
EDV -109 cm/s

PW 42%
WF 130Hz
SV 1.0mm
M2
3.5MHz
1.7cm

M2 M3
+28.9
-28.9
-6.0
cm/s
-4.0
-2.0
m/s

6.6sec
MRI
Operation

- General anesthesia
- Left SCM incision made
- Arteriotomy from CCA to ICA
- 3x4 mm shunt placed from CCA to ICA
- ECA was occluded
- Endarterectomy performed
- Carotid bed was cleaned
- Hemashield polypropylene patch closure
Post Op

- Pt did not have any neurologic deficits
- Pt was monitored for neurologic changes and BP control
- POD 1
 - No cranial nerve or other neurologic deficits
 - BP intermittently high up to SBP 180’s
- POD 2
 - BP controlled
 - Discharged home
- POD 43
 - Pt seen in outpatient clinic doing well
Management of Carotid Disease
Introduction

• Stroke is the 3rd leading cause of death in the US
• 83% are ischemic stroke
• Primary indication for surgery is prevention of stroke
• Majority of strokes caused by cervical carotid artery disease, followed by atrial fibrillation
• Risk factors:
 ○ Hypertension
 ○ Atrial fibrillation
 ○ Heart disease
 ○ Diabetes
 ○ Smoking
 ○ Hyperlipidemia
Symptoms

- CVA
 - Symptoms lasting more than 24 hours
- TIA
 - Symptoms resolve within 24 hours
 - Most only last seconds to minutes
- Symptoms may not correlate with radiologic findings
- Symptoms mostly are from emboli
- Less often, low flow from severe stenosis
- Examples:
 - Hemiplegia of contralateral side
 - Weakness of paralysis of contralateral side
 - Visual changes – amaurosis fugax, window shade, flashing lights, sparks
 - Speech symptoms with left sided lesions
 - Less typical are light headedness, memory loss, loss of consciousness
Diagnostic Tests

- **Duplex Ultrasound**
 - B-mode to visualize the artery
 - Doppler mode to assess velocity of flow

<table>
<thead>
<tr>
<th>STENOSIS (%)</th>
<th>PEAK SYSTOLIC VELOCITY (cm/sec)</th>
<th>PEAK DIASTOLIC VELOCITY (cm/sec)</th>
<th>SPECTRAL BROADENING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td><120</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>16–49</td>
<td><120</td>
<td>NA</td>
<td>Present</td>
</tr>
<tr>
<td>50–79</td>
<td>>120</td>
<td><125</td>
<td>Marked</td>
</tr>
<tr>
<td>80–99</td>
<td>>120</td>
<td>>125</td>
<td>Marked</td>
</tr>
<tr>
<td>100</td>
<td>No flow noted</td>
<td>No flow noted</td>
<td>No flow noted</td>
</tr>
</tbody>
</table>
Diagnostic Tests

- **Conventional Angiography**
 - Seldom used
 - 1% risk of stroke usually from dislodgement of emboli

- **MR Angiography**
 - Ability to see the entire carotid system
 - Turbulent blood flow can make lumen appear narrower than reality

- **CT Angiography**
 - Excellent 3D images
 - Becoming almost as accurate as conventional angiography
Medical Management

- **Risk factor reduction**
 - Reduction of elevated BP
 - Smoking cessation
 - Lipid lowering therapy may be effective

- **Antiplatelet therapy**
 - 23% risk reduction in pt with previous TIA or stroke
 - Optimal dose is not yet known
Indications for Surgery

- Prevent future stroke
- Best indicators for risk of future stroke are:
 - Focal neurologic symptoms
 - Degree of narrowing of vessel
- The 2 classic papers are:
 - The North American Symptomatic Carotid Endarterectomy Trial (NASCET)
 - Asymptomatic Carotid Atherosclerosis Study (ACAS)
Endarterectomy for Asymptomatic Carotid Artery Stenosis

Prospective, randomized, multicenter trial
1662 patients with >60% stenosis
Randomized to either medical management or medical management + CEA
825 patients were randomized to surgery arm
Patients underwent pre op arteriography
Endarterectomy for Asymptomatic Carotid Artery Stenosis

During the perioperative period
- 2.3% of surgical arm patient had a stroke or died
- 0.4% of the medical group had a stroke or died

Arteriographic complication rate was 1.2%

5 year risk of ipsilateral stroke:
- 11% for the medical group
- 5.1% for the surgical group
- 57% risk reduction (p=0.004)

Splitting sample into gradations of 60-69%, 70-79%, and 80-99% stenosis showed no statistically significant gradation in 5-year risk reduction
- However the study was not powered for this analysis
Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators

Prospective, randomized, multicenter trial

Surgeons had <6% mortality for 50 consecutive cases over 2 years

659 patients with 70-99% stenosis

328 underwent carotid endarterectomy

Results:

- 30 day morbidity for surgical group was 5.8%
- Cumulative risk of major ipsilateral stroke at 2 years
 - 2.5% for the surgical group
 - 13.1% for the medical group
 - Absolute risk reduction of 10.6% (p<0.001)
NASCET continued to enroll patients with moderate stenosis <70%

- 2267 patients enrolled
- 858 patients in the 50-69% stenosis group
- Among patients with 50-69% stenosis
 - 5 year rate of any ipsilateral stroke:
 - 15.7% in surgical group
 - 22.2 percent in medical group
 - Relative risk reduction 29% (p<0.045)

- Among patients with <50% stenosis there was no statistically significant difference
AHA Guidelines for CEA 1998

Patients with Asymptomatic Carotid Disease

- **Surgical risk <3% and life expectancy >5 years**
 - Proven: ipsilateral CEA for >60% stenosis
 - Acceptable: Unilateral CEA for stenosis >60% simultaneously with CABG
 - Uncertain: Unilateral CEA for >50% stenosis with ulcer

- **Surgical risk 3-5%**
 - Proven: none
 - Acceptable: Ipsilateral CEA for >75% stenosis in presence of contralateral 75-99% stenosis
 - Uncertain: 75% without contralateral stenosis, or CEA with CABG

- **Surgical risk 5-10%**
 - Proven: none
 - Acceptable: none
 - Uncertain: CEA with CABG
AHA Guidelines for CEA 1998

- Patients with Symptomatic Carotid Disease
 - CEA for 70-99% stenosis with recent nondisabling carotid artery ischemic events
 - CEA is not beneficial for 0-29% stenosis
 - Benefit is uncertain for 30-69% stenosis
- Guidelines have not been updated with more recent data
• SAPPHIRE - Prospective, randomized, multicenter trial
• 334 patients with coexisting conditions that increased risk of CEA
• Symptomatic 50% stenosis or asymptomatic 80% stenosis
• CEA vs. carotid artery stenting with emboli-protection device
• 12.2% in the stenting group and 20.1% in the CEA group had adverse events
• P=0.004 for noninferiority and p=0.053 for superiority
SAPPHIRE showed that stenting was not inferior to CEA but the amount of adverse events was disturbingly high.

Multiple other trials:
- CaRESS – nonrandomized study, showed equivalence
- CAVATAS – no difference in major events but severe restenosis was high in the stent group
- SPACE – no difference in major events
• CREST – ongoing randomized, multicenter trial
• Report on 1565 patients enrolled in the lead-in phase with:
 ○ Symptomatic >50% stenosis by angiography
 ○ Asymptomatic >70% stenosis by angiography
• Interim analysis revealed excessive stroke and death rate of 12.1% in octogenarians (excluded from the study)
• Subjects considered high risk for CEA or with other comorbidities were eligible
• Initial results are promising
 ○ Stroke and death rate was 4.5% (2.9% if age >75 years excluded)
 ○ Stroke and death rate for NASCET was 5.8%
 ○ Stroke and death rate for ACAS was 2.3%
Surgical Technique
Surgical Technique
Surgical Technique
Surgical Technique

Incision

Potts' scissors
Surgical Technique
Anesthetic Considerations

<table>
<thead>
<tr>
<th>Regional anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Able to monitor neurologic status</td>
</tr>
<tr>
<td>- Some patients have been intolerant of clamping and required a shunt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Unable to monitor neurologic status clinically</td>
</tr>
<tr>
<td>- Shunt can be used routinely</td>
</tr>
<tr>
<td>- Shunt can be used selectively if some monitoring technique is used to prevent cerebral ischemia</td>
</tr>
</tbody>
</table>
 - EEG, evoked potential, carotid stump pressure, transcranial doppler are all inferior to the awake patient |

| Several large studies have documented equal rates of neurologic and cardio pulmonary complications |
Closure Techniques

- **Primary closure**
 - Longitudinal arteriotomy
 - Eversion endarterectomy
- **Patch angioplasty**
 - Materials:
 - Autologous vein
 - Synthetic material
 - Bovine pericardium
- Excellent results have been independently reported with each technique
- Optimal method remains controversial
- Recent multivariate analysis of >10,000 CEA’s suggests a lower perioperative risk with patch angioplasty
Complications of CEA

- Perioperative stroke
 - Within 24 hours usually due to technical imperfection
- Cranial nerve injury
- Cerebral hyperperfusion syndrome
- Postoperative hematoma
 - Risk of airway compromise
- Infection
- Perioperative blood pressure instability
Summary

- CEA is a proven effective method of decreasing risk of stroke in patients with carotid stenosis
- CEA is safe and associated with acceptably low risk in appropriately selected patients
- Trials are ongoing for carotid artery stenting
References

- Sabiston Textbook of Surgery