Management of solid organ injury in Trauma
Sara Kim PGY-4
6/5/14
Case presentation

- 26M transfer from outside hospital, s/p assault, fall onto pipe, complaining of left sided chest pain/abdominal pain, inability to void
- Workup revealed: Lt lower rib fx, high grade Lt kidney lac, suspected splenic lac
- Serial Hg at OSH 13.8 → 12.9 → 12.2
- PMHx/PSHx: noncontributory
- Transferred to Kings County Hospital
Case Presentation

- **Vitals:** P 90-110s bpm, BP 130/65, RR 20, T 97.7°F
- **Primary survey:** intact, 2 large bore IVs in place
- **Secondary Survey:** Left flank tenderness, gross hematuria
- **CT C/A/P:** L 8th rib fx, small hemo/pneumothorax, grade II/III splenic lac, grade IV kidney lac with large perinephric hematoma with extravasation of contrast from collecting system
CT images
Worsening left flank pain, febrile, HR 100s

- Slow downtrend of Hct: 30 → 29.1 → 28.4 → 27.1
- CXR unchanged; blood cx negative
- Repeat CT A/P:
 - large retroperitoneal hematoma
 - extravasation of urine from anterior and posterior collecting system
 - Blood clots in renal pelvis, non-filling of left ureter
 - Increasing perihepatic and perisplenic fluid with extension into the lesser sac;
Operative events HD 3-4

- GU attempted stent placement in OR
 - Extravasation of urine at the ureteropelvic junction
 - Questionable placement of stent

- Post op:
 - One hour post-op, pt developed respiratory distress with desaturation to 70%, HR 140s → intubation
 - Hct decreased from 30 to 22
 - Decision was made to explore patient
Operative events HD 3-4

- Exploratory laparotomy
 - Left nephrectomy
 - Splenectomy
 - Removal of stent

- EBL: 2L

- Intra-op transfusions
 - 6U pRBC
 - 4U FFP
 - 1U platelets
 - 3L crystalloids
SICU course

- HD 5 – Extubated
- HD 7-10, pt developed ileus which resolved with NGT
- HD 14 – hematoma in renal fossa drained by IR
- HD 17 – pt discharged home
Management of blunt abdominal trauma

- Initial management and algorithms
- FAST
- Trauma grading scale
- History of nonop management
- Article
- Management of kidney injuries
 - Indications for operation
 - Renovascular trauma and nonoperative management
National Trauma Database

- **Spleen**
 - Most commonly injured abdominal organ
 - 50.7% of blunt abdominal trauma
 - 14.5% of penetrating abdominal trauma

- **Liver**
 - 2nd most commonly injured abdominal organ
 - 39.8% of blunt abdominal trauma
 - 42.3% of penetrating abdominal injury
Mechanisms of injury

- Crushing
 - direct application of a blunt force to the abdomen
Mechanisms of injury

- Shearing
 - sudden decelerations apply a shearing force across organs with fixed attachments
Mechanisms of injury

- Bursting
 - raised intraluminal pressure by abdominal compartment can lead to rupture of hollow viscus
Mechanisms of injury

- Penetration
 - Disruption of bony areas by blunt trauma that can generate sharp fragments causing secondary penetrating injury
Clues on physical exam

- **Seat belt sign**
 - Increased concern for mesenteric, bowel or lumbar spine injuries

- **Cullen Sign**
 - Periumbilical ecchymoses
 - Retroperitoneal or intraabdominal hemorrhage

- **Grey Turner sign**
 - Flank ecchymosis
 - Retroperitoneal hemorrhage

- **Kehr Sign**
 - Referred pain to shoulder
 - Signifies intra-abdominal hemorrhage, splenic injury, free air
Evaluation of blunt abdominal trauma

- ABCDEs
- Secondary survey
 - AMPLE
 - Full body examination
 - CXR/PXR/FAST
 - Frequent RE-evaluation
- Indications for immediate laparotomy
 - Hemodynamic compromise
 - + FAST
 - DPL (can detect >250cc of intraperitoneal fluid)
 - Abdominal rigidity/peritonitis
Evaluation of blunt abdominal trauma

- Hemodynamically stable
 - CT Chest/Abd/Pelvis
 - Hollow viscus injury → OR
 - +/- angioembolization if concern for active arterial bleeding
FAST

- Purpose of FAST exam:
 - To rapidly determine intraperitoneal bleeding in a hemodynamically unstable patient
- 4 views
FAST
FAST

A

FLUID

LIVER

KIDNEY
<table>
<thead>
<tr>
<th>Grade</th>
<th>Liver</th>
<th>Spleen</th>
<th>Kidney</th>
</tr>
</thead>
</table>
| I | Subcapsular hematoma <10%
Laceration <1cm | Subcapsular hematoma <10%
Laceration <1cm deep | Contusions, subcapsular hematoma, nonexpanding |
| II | Subcapsular hematoma 10-50%
Laceration 1-3 cm | Subcapsular hematoma 10-50%
Laceration 1-3 cm | Nonexpanding hematoma, perirenal hematoma confined to retroperitoneum
Laceration <1cm parenchymal depth |
| III | Subcapsular hematoma >50%
Intraparenchymal hematoma >10cm or expanding
Laceration >3cm | Subcapsular hematoma >50%
Intraparenchymal hematoma >5 cm or expanding
Laceration >3cm | Laceration >1 cm without collecting system rupture or urinary extravasation |
| IV | Parenchymal disruption 25-75% of hepatic lobe or
1-3 Couinaud's segments in a single lobe | Laceration involving segmental or hilar vessels with major devascularization (>25% of spleen) | Laceration of parenchyma extending through the renal cortex, medulla and collecting system, main renal artery or vein with contained hemorrhage |
| V | Parenchymal disruption >75% of lobe, >3
Couinaud's segments
Juxtahepatic venous injuries | Completely shattered spleen, hilar vascular injury that devascularized the spleen | Laceration – completely shattered kidney, avulsion of renal hilum that devascularized the kidney |
Nonoperative management of blunt abdominal trauma: the role of sequential diagnostic peritoneal lavage, computed tomography, and angiography.

Group I – Bedrest Only (n=19)
- No extravasation
 - Successful n=18
 - Required embolization n=1 -- successful

Group II – Bedrest + coil embolization of splenic artery (n=18)
- Two pts Requiring laparotomy (between both groups)

Group III – exploratory laparotomy without angio/embolization (n=8)
- 35/36 underwent splenic salvage
Abdominal trauma, from operative to nonoperative management

- **DPL**
 - High sensitivity, low specificity
 - Caveats: unreliable for distinguishing retroperitoneal injuries and ruptured diaphragm

- **FAST**
 - High sensitivity, low specificity

- **CT scan**
 - Solid organ injuries
 - Drawbacks: radiation, need for contrast
 - Benefits: can show potential complications for pancreatic and duodenal injuries (pancreatitis, pseudocyst, fistula, abscess)
 - **CT grading system does not predict need for operation or embolization after liver/spleen trauma**
Prospective observational study to identify predictive factors requiring laparotomy and failure of NOM

46 pts met criteria for multiple solid organ injury
- 15 pts underwent immediate exlap
- 31 pts underwent NOM
 - 23 pts successfully managed nonoperatively
 - 8 pts failed – underwent exlap
Operative group vs NOM group

Operative group had:
- Higher transfusion requirements
- Increased crystalloid resuscitation
- A drop in hct >20% within 1st hour
- Higher lactate levels
- Higher solid viscus score
Failed NOM vs successful NOM

Failed NOM group had:

- Higher solid viscus score and ISS
- Lower GCS
- Hypotension was present at admission
- Required more crystalloids and transfusions

Cause of failure

- 4 pts – delayed splenic (3) and kidney bleed
- 4 pts – nontherapeutic lap (2 liver lacs, 1 mesenteric lac, 1 pancreatic injury)
Renal Trauma: overview

- 3% of all trauma admissions, 10% of abdominal trauma
- Signs and symptoms
 - Flank pain
 - Microscopic or gross hematuria
- Emergent exploration
 - Hemodynamic instability
 - Penetrating traumas requiring laparotomy for other injuries
- Anatomic variations
 - Pelvic kidneys, horseshoe kidneys
 - Multiple renal arterial, venous and ureteral duplications
Renal Trauma: workup

- Urinanalysis
- CT A/P with 5 minute delayed imaging
 - Delayed imaging will reveal urinary extravasation
- Special considerations
 - Pediatric trauma + hematuria
 - Kidneys are relatively larger compared to their body size
 - More prone to injury
 - De-acceleration injuries
 - Floating in fat, fixed at two points: the vascular pedicle and the ureters
 - Commonly associated injuries
 - Lower rib, lumbar vertebral or transverse process fractures
Non operative management

- 85-90% successful

Complications of non-operative management of kidney injuries can be managed with percutaneous interventions
- Drainage of urinomas, collections, urinary stent placement
- Less successful for renovascular trauma
 - Selective angioembolization, stent placement
Operative management

- Indications for exploration
 - Signs of continued renal bleeding
 - Pulsatile/expanding/uncontrolled hematoma
 - Grade V injuries – avulsion of the vascular pedicle

- Relative indications
 - Major devitalized parenchyma with other intra-abdominal injuries (higher rate of complications)
 - Persistent urinary extravasation or sepsis
 - Ureteropelvic junction injuries – rarely resolve spontaneously
 - Complications include: urinoma, ileus and infection
Operative management (cont)

- Arterial thrombosis
 - Controversy on management
 - >12 hrs ischemic time – allow kidney to atrophy
Surgical management

- Standard midline trauma laparotomy
- Kidney exposure
 - Proximal vascular control b4 opening Gerota’s fascia if attempting salvage
 - If unstable patient, direct approach through Gerota’s fascia
Gain proximal vascular control for L kidney

- Retract transverse colon superiorly and anteriorly
- Retract small bowel to the right and superior
- Incise posterior peritoneum right above IMV over the aorta
- Continue dissection superiorly until L renal vein encountered
- Mobilize and retract left renal vein to gain control of L renal artery
- Incise white line of Toldt with medial rotation of the left colon
Gain vascular control of R kidney

- Dissect out R renal artery, posterior to vein and to the right of the aorta
- Identify R renal vein travelling to IVC
- Mobilize R colon and reflect medially
Renal salvage

- Control any significant bleeders
- Excise devitalized tissue
- Repair collecting system with watertight absorbable suture
- Tension free repair of capsule with pledgets
- Omental flap if other injuries present
Nephrectomy without prior vascular control

- Medial visceral rotation
- Vertical incision of Gerota’s fascia to deliver kidney anteriorly
- Control hilum with digital compression
- Ligate artery and vein
- Identify and ligate ureter
Conclusions

- 20 pts with b/l renal artery occlusion
 - Surgical revascularization successful in 9/16 pts (56%)
- 139 pts with unilateral renal artery occlusion
 - Surgical revascularization successful in 9/34 pts (26%)
 - Decreased renal function in 67% of these patients at mean 1.8 yr follow up
 - Hypertension in 34/105 pts who were observed
- Surgical revascularization rarely successful in unilateral renal artery occlusion
- Attempt indicated in pts with b/l renal artery occlusion or a unilateral kidney
Angiointervention: high rates of failure following blunt renal injuries.

- 434 pts
 - 416 pts with NOM
 - 337 (81%) successful NOM
 - 79 pts (19%) required angiography
 - 22 pts (27.8%) underwent embolization
 - 6pts failed embolization
 - Higher blood transfusion requirement
 - 57 pts not requiring embolization
 - 7 pts (12%) failed embolization

- Conclusion: 16% of pts failed embolization
Factors associated with a poor outcome following renovascular injuries

- Blunt trauma
- Grade V injuries
- Attempted arterial repair
Analysis of Diagnostic angiography and angioembolization in the Acute Management of renal Trauma Using a National Data Set

James Hotaling, Sorenson, Thomas G. Smith, III, Rivara, Wessells, Voelzke
J Urol, 185 (2011), pp. 1316-1320

Initial angioembolization failed 100% in Grade IV and V injuries
- With serial AE, 78% of grade IV and 83% of grade V injuries did not require nephrectomy
- 10 pts eventually required nephrectomy in Grade IV and Grade V injuries
8 pts with main renal artery occlusion or dissection

6 pts were successfully stented
 ◦ 2 pts had contrast extravasation requiring angioembolization

4 pts had kidney atrophy

2 pts had successful stent patency and functional kidneys

One pt had nephrectomy from severe renal HTN

One pt lost to follow up

One was normotensive with unknown stent patency
Summary

- Blunt abdominal solid organ injuries can be managed expectantly given hemodynamic stability.
- Angioembolization highly successful for management of blunt liver and splenic traumas, less successful in blunt renal trauma.
- Multiple solid organ injury can be managed nonoperatively, with caution.