Novel p53-Derived Peptide Induces Rapid Human Pancreatic Cancer Cell Death

Kelley A. Sookraj, M.D., Victor Adler, M.D., Ph.D, Josef Michl M.D., Michael Zenilman M.D., Matthew R. Pincus M.D., Ph.D., Wilbur B. Bowne M.D.

July 25th 2008
Background:

- Molecular modeling studies have identified various potential anti-cancer peptides
- Novel p 53-based synthetic peptides promote anti-cancer activity
Background:

- p 53 peptides from MDM-2-binding domain

Rosal, R. *Biochemistry* 2004; 1854-1861
Background:

- PNC-28

P 53 Peptide 17-26 - Penetratin

```
ETFSDLWKLL-KKWMRRNQFWVKVQRG
```

Kanovsky, M. *PNAS.* 2001; 12438-12443.
Background:

- **Tumor cell killing by PNC-28**

<table>
<thead>
<tr>
<th>CELL LINE</th>
<th>CELL TYPE</th>
<th>TIME TO CELL DEATH (1 x 10^6 CELLS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUC-3</td>
<td>Pancreatic Acinar Carcinoma</td>
<td>72 hr</td>
</tr>
<tr>
<td>E-49</td>
<td>Angiosarcoma</td>
<td>72 hr</td>
</tr>
<tr>
<td>SW-1417 *</td>
<td>Colon Cancer</td>
<td>48 hr</td>
</tr>
<tr>
<td>MDA-MB-453 *</td>
<td>Breast Cancer</td>
<td>1 hr</td>
</tr>
<tr>
<td>H1299 *</td>
<td>Lung Cancer</td>
<td>1 hr</td>
</tr>
<tr>
<td>MDA-MB-468</td>
<td>Breast Cancer</td>
<td>30 min</td>
</tr>
</tbody>
</table>

* Homozygously p53-deleted
Background:

- Anti-cancer observations

 p 53 peptide 17-26 + Penetratin → PNC-28

 Tumor cell membrane penetration (pore formation)

 Rapid tumor cell death

 Preferential induction of tumor cell necrosis

Kanovsky, M. *PNAS.* 2001; 12438-12443.

Do, TN. *Oncogene.* 2003; 1431-1444.
Hypothesis:

- To test if treatment with PNC-28 has similar anti-cancer effect against human pancreatic cancer
Specific Aims:

- Investigate the ability of PNC-28 to inhibit the growth of a human pancreatic cancer cell line in culture

- Elucidate potential anti-cancer mechanism for cell death
Materials and Methods:

- **Cells & treatment**
 - Incubated 2×10^4 MiaPaCa-2 human pancreatic carcinoma cells with PNC-28 or unrelated PNC-29
 - Peptide administered at predetermined dose
 - (50 – 300 µg/ml)
 - Treatment daily over 4 consecutive days
Materials and Methods:

- Cell morphology & growth inhibition
 - Culture analysis performed daily to measure changes in growth characteristics and cell morphology
 - Growth inhibition determined by counting viable tumor cells
Materials and Methods:

- Cell necrosis & apoptosis
 - Relative cytotoxicity determined by measuring LDH release
 - Initiation of apoptosis by detection of caspase -3 activity was performed
Novel p 53-Derived Peptide Induces Rapid Human Pancreatic Cancer Cell Death

Results:

Anti-cancer observations

- Morphologic studies

![Morphologic studies A](MiaPaCa-2 (No Treat))

![Morphologic studies B](MiaPaCa-2 (PNC-28))
Results:

Anti-cancer effect

- **Growth inhibition**

![Graph showing cell number over hours of treatment with different concentrations of PNC-28 peptide](image)

*Triplicate wells

P < 0.001

www.downstatesurgery.org
Results:

Anti-cancer effect

- Absence of growth inhibition
Novel p53-Derived Peptide Induces Rapid Human Pancreatic Cancer Cell Death

Results:

- **Anti-cancer profile**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Response</th>
<th>Peptide (max dose response/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNC-28</td>
<td>+</td>
<td>300 µg</td>
</tr>
<tr>
<td>PNC-29</td>
<td>–</td>
<td>No effect</td>
</tr>
</tbody>
</table>

+ = growth inhibition at 24 hours
Results:

Anti-cancer mechanism

- LDH release at 24 hours

![Graph showing LDH release at 24 hours with PNC Peptide Dose (µg/ml) on the x-axis and % Relative Cytotoxicity on the y-axis. Bars indicate LDH release at different peptide doses, with a significant difference marked at 300-28 with a * symbol and an asterisk indicating triplicate wells with P < .01.]
Results:

Anti-cancer mechanism

- LDH release at 24 hours
Results:

Anti-cancer mechanism

- Absence of caspase -3 activity

![Graph showing Rhodamine Counts over 24 Hours of Treatment]

*Triplicate wells
P < .01
Results:

- Mechanism data implications

- PNC-28 induced release of LDH; anti-cancer activity promotes cell death by necrosis

- Absence of early marker for apoptosis; p 53-derived peptide acts by p53-independent mechanism
PNC-28 is a synthetic peptide derived from the mdm-2-binding domain of p 53 attached to penetratin

- PNC-28 inhibits tumor cell growth
- Anti-cancer mechanism consistent with necrosis
Conclusion:

- PNC-28 inhibits MiaPaCa-2 human pancreatic cancer cell line in culture
- Anti-cancer activity of PNC-28 is dose dependent
- Anti-cancer mechanism appears to be p53-independent necrosis, not apoptosis