Blunt Popliteal Artery Trauma

David Radvinsky MD
August 20, 2015
Case Presentation

• 41 yo male s/p motorcyclist struck by motor vehicle (8PM)
 • + Helmeted
 • (+) LOC
 • On backboard with left lower extremity in splint
 • C-collar in place

• Primary Survey
 • Airway intact
 • Bilateral Breath sounds – 99% on 2L NC
 • Circulation - BP 155/95 HR 86
• No evidence of expanding hematoma

• Delayed capillary refill

• Cool compared to right foot
Secondary Survey

- HEENT: no scalp lesions, PERRLA, EOMI, no facial tenderness, no blood in the ear canal or nasal passages.
- C-spine: no midline tenderness
- Thorax: +5x5cm area of road rash over right shoulder (3rd degree). no chest wall tenderness, with equal chest rise. RRR
- Abdomen: soft, obese, NT/ND
- Pelvis: stable, tenderness over left posterior pelvis/hip
- T/L-spine: no midline tenderness
- Extremities: (as described)
 - Motor (LLE) – limited by pain
 - Sensory (LLE) – common peroneal nerve distribution
Sensory & Motor

- Superficial Peroneal
- Foot Eversion
- Deep Peroneal
- Foot Dorsiflexion
- Toe Extension
Re-Evaluation & Adjuncts

- Vitals: BP: 90/48 HR 98 SpO2: 96% on 2L NC
- Transfused 1 unit pRBC

- PMHx: denied
- PSHX: denied
- Allergies: NKDA
- Meds: None

- CXR: negative
- PXR: (as shown)
- FAST: negative

- Tib/Fib placed into traction
- Improved capillary refill
- Pulse exam unchanged
- NO expanding hematoma
Imaging

- CT Head: negative
- CT c-spine: negative
- CT chest: negative
- CT abd/pel: acute displaced left ASIS fracture with adjacent intramuscular hematoma
- CTA LLE: abrupt cutoff of contrast in the popliteal artery 2cm distal to Hunter’s canal

- Knee Dislocation?
CTA (9:15)
To OR

- EX- FIX FIRST!?!
 - (10 PM)

- Left Lower extremity angiogram (11:30 PM)
Superficial Femoral Artery to Below Knee Popliteal Artery Bypass (12 AM)

- PTFE graft (25 cm)
- 4 compartment fasciotomy
• Completion Angiography (4 AM)
Post-Op

- EBL 1500 cc
- Ischemia Time – 6 Hrs
- Transfused 8 units pRBC, 4 FFP, 1 unit platlets, 1 cryo
- VAC closure

- POD#0 - DP/PT pulse present
 - 4 units pRBC, 2 units FFP
 - Hct 24 -> 21 (transfused additional 2 units pRBC) -> 27
 - CK peaked at 34K -> bicarb drip started
- POD#2 – Hct -> 20.7 (transfused additional 1 units pRBC) -> 20.7
- POD#3 – Hct -> 19.5 (transfused additional 2 units pRBC) -> 24.8
 - CTA – graft patent; iliac wing hematoma slightly larger; no collections
- POD#4 – Heparin gtt started once HCT stabilized
 - CK trending down -> 9K
Post-Op

- POD#7 – fever to 102 -> pan-cultured -> vanco/zosyn
 - Urine – Enterococcus
 - Diarrhea – Flagyl – c.diff negative x2
 - CTA LLE – no collections, patent graft
- POD#9 – OR for washout
 - Cultures – stenotrophomonas and Enterobacter -> Levaquin
- POD#11 – OR for washout – purulence from lateral fasciotomy site
- POD#14 – Guillotine BKA
 - Hardware removed -> Knee immobilizer
 - Myonecrosis
- POD#18 – MRI – posterior knee hematoma/collection
 - PCL, ACL, MCL, LCL, posterolateral corner and MPFL are all torn
- POD#20 – OR for evacuation of hematoma in posterior knee and debridement of guillotine stump
 - Cultures – Pseudomonas -> Gentamicin
- POD#25 – Graft excision and AKA
Questions?
Epidemiology

- Popliteal Vessel Injuries rare – 0.2% of all traumas
- High-energy mechanisms
 - Pedestrian Struck
 - Motorcycle Accidents
 - Automobile Accidents
- Mechanism of blunt injury to the popliteal artery
 - Anterior dislocation
 - Posterior dislocation
 - Tibial plateau fracture
- Associated fractures (80% to 100%)
- Associated venous injury (15% and 35%) – popliteal vein
- Associated nerve injury (10%) – common peroneal nerve
Anatomy

- Continuation of superficial femoral art.
- Hunter’s canal
- Popliteal fossa
- Lower border of popliteus muscle
- Branches to anterior tibial artery and tibioperoneal trunk
Diagnosis

• Physical Exam
 • Hard Signs
 • Absent distal pulse
 • Palpable thrill or audible thrill
 • Actively expanding hematoma
 • Active pulsatile bleeding
 • Soft Signs
 • Diminished distal pulse
 • History of significant hemorrhage
 • Neurologic deficit
 • Proximity of wound to named vessel
• An abnormal pedal pulse identified popliteal artery injuries with a sensitivity of 85% and specificity of 93%
• Ankle-to-brachial index (ABI) - less than 0.90 predicted the injury with 87% sensitivity and 97% specificity
• Imaging
 • Plain radiographs to evaluate for fractures and/or dislocations
 • CTA to evaluate vessel integrity
 • Transection
 • Dissection
 • Thrombosis
 • ANGIOGRAPHY
Management

1. Complex extremity trauma (resuscitation/exam)

2. Presence of factor(s) posing increased risk of limb loss?
 - Yes → Primary amputation
 - No → Hard signs of vascular injury?

3. If no, decision point:
 - Hard signs of vascular injury?
 - Yes → OR/On-table arteriogram (+)
 - No → Extensive soft tissue loss

4. Extensive soft tissue loss
 - Crush injury
 - Multiple fractures
 - Elderly with medical comorbidity
 - Severe contamination
 - Patient preference

5. OR/On-table arteriogram (+)

www.downstatesurgery.org
Management

• Limb salvage vs. primary amputation
 • Mangled Extremity Severity Score
 • Gustilo III - C skeletal injuries
 • Transected tibial or sciatic nerve
 • Shock and life-threatening associated injuries
 • Below-knee arterial injury
 • Extensive soft tissue loss
 • Crush injury
 • Multiple fractures
 • Elderly with medical comorbidity
 • Severe contamination
 • Patient preference
Mangled Extremity Severity Score

• Successful limb salvage vs future amputation
 • MESS ≥7 had a 100% predictable value for amputation
• Lower Extremity Assessment Project (LEAP)
 • NIH funded, multicenter, prospective observational study
 • No support of any examined lower extremity injury severity index
 • Indices lack sensitivity, but were in some cases specific.
 • Not useful in identifying patients that would require amputation
 • Useful in predicting limbs which could be successfully salvaged
Limb Salvage vs. Amputation

- Mangled Extremity Severity Score

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limb Ischemia*</td>
<td>Reduced Pulse but Normal Perfusion</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Pulseless, Paresthesias, Slow Capillary Refill</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>Cool, Paralysis, Numb/Insensate</td>
<td>+3</td>
</tr>
<tr>
<td>Patient Age Range</td>
<td>< 30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30-50</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>≥ 50</td>
<td>+2</td>
</tr>
<tr>
<td>Shock</td>
<td>SBP > 90 mmHg Consistently</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hypotension Transiently</td>
<td>+1</td>
</tr>
<tr>
<td>Injury Mechanism</td>
<td>Low Energy (stab, gunshot, simple fracture)</td>
<td>+1</td>
</tr>
<tr>
<td></td>
<td>Medium Energy (dislocation, open/multiple fractures)</td>
<td>+2</td>
</tr>
<tr>
<td></td>
<td>High Energy (high speed MVA or rifle shot)</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>Very High Energy (high speed trauma with gross contamination)</td>
<td>+4</td>
</tr>
</tbody>
</table>

*If Limb Ischemia present > 6 hours, Limb Ischemia Points are multiplied by 2
Approach
Semimembranosus
Semitendinosus
Biceps Femoris
Popliteal Artery
Popliteal Vein
Lesser Saphenous Vein
Medial Head
Lateral Head
Gastrocnemius
Revascularization (Shunting)
Fasciotomy

- Anterior compartment
- Anterior tibial artery and vein and deep peroneal nerve
- Lateral compartment
- Peroneal artery and veins
- Superficial posterior compartment
- Posterior tibial artery and vein and tibial nerve
- Deep posterior compartment
Orthopedic repair follows vascular repair
 • Temporary fixation
 • Definitive repair delayed
Options for Definitive repair

- Lateral arteriorrhapsy or venorrhapsy
- Patch angioplasty
- Resection with end-to-end anastomosis
- Resection with interposition graft
- Bypass graft
- Extraanatomic bypass
Autogenous vs. Graft

• 1 year patency rates in infrapopliteal position
 • 70-80% with autogenous vein
 • 30-50% for prosthetic grafts
• Autogenous – saphenous vein (ipsilateral or contralateral)
• Prosthetic options
 • Dacron
 • PTFE
 • Antiplatelets or anticoagulants
• Adjunctive vein cuff at the distal anastomosis of graft improves patency
Role for Endovascular?

• Becoming more popular with newer techniques
• Case reports in the literature
 • Thrombosis
 • Pseudoaneurysm
 • AV Fistula
 • Dissection
Venous injury

- Up to 1/3 of patients with arterial injuries have venous injury
- **Vein injury should be repaired**
 - Leg edema
 - Compartmental hypertension
 - Occlusion of arterial repair
 - Higher amputation rates
 - Allow for collateralization
 - Risk of acute thrombosis at the site of repair
 - pulmonary embolism
Soft Tissue

- Soft tissue debridement at initial operation
 - Cover vascular repair with viable muscle
 - Decreases risk of infection and limb sepsis
- Monitor for Infection
 - Devitalized tissue
 - Hematoma
 - Fasciotomy sites
- Wound sepsis -> return to the OR
- Open contaminated wounds -> broad spectrum abx
- VAC assisted closure to promote healing of fasciotomy sites
- Fasciotomy that cannot be closed primarily
 - Skin graft once the muscle swelling has subsided
Nerve Injury

- **Common Peroneal Nerve** – 10%
 - Loss of function of foot - dorsiflexion
 - High-stepping walk (steppage gait or footdrop gait).

- Should undergo surgical exploration at emergency
- Recover spontaneously
 - Full recovery of partial peroneal palsy (76% to 87%)
 - Full recovery of complete lesions (20% to 35%)
- Repair indicated for lack of recovery after 2-5 months
- **Direct Repair** – 84%
 - Grafting (sural nerve)
 - <6 cm – 75%
 - >6cm – 16-38%
- **Tendon transfer**
 - Restoration of dorsiflexion
Post-Op

- Secondary Amputation
 - Failure of the arterial repair
 - Limb sepsis in the presence of a patent artery
 - Extensive muscle necrosis and nerve injury with a patent repair

- Patient’s functional status
 - Persistence of nerve deficit
 - Ankle–foot orthosis
 - Remedial operations to correct foot drop deformity

- REHAB
Meta-analysis of prognostic factors for amputation following surgical repair of lower extremity vascular trauma

Z. B. Perkins¹, B. Yet², S. Glasgow¹, E. Cole¹, W. Marsh², K. Brohi¹, T. E. Rasmussen⁴ and N. R. M. Tai¹;³

¹Centre for Trauma Sciences and ²Department of Computer Science, Queen Mary, University of London, London, and ³Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK, and ⁴US Army Medical Research and Materiel Command, Fort Detrick, Maryland, USA

Correspondence to: Mr Z. B. Perkins, Centre for Trauma Sciences, The Royal London Hospital, London E1 1BB, UK (e-mail: zane.perkins@nhs.net)

• Meta-analysis
• 45 studies – lower extremity vascular trauma
• Significant prognostic factors
 • associated major soft tissue injury
 • compartment syndrome
 • multiple arterial injuries
 • duration of ischemia exceeding 6 h
 • associated fracture
 • Blunt mechanism of injury
 • age over 55 years
 • Male sex
Post-Op

<table>
<thead>
<tr>
<th></th>
<th>Pooled odds ratio</th>
<th>P*</th>
<th>I²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (≤ 55 versus > 55 years)</td>
<td>0.33 (0.05, 1.43)</td>
<td>0.07</td>
<td>0.30</td>
</tr>
<tr>
<td>Sex (M versus F)</td>
<td>0.64 (0.32, 1.14)</td>
<td>0.07</td>
<td>0.26</td>
</tr>
<tr>
<td>Mechanism of injury</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blunt versus penetrating</td>
<td>1.88 (1.05, 3.04)</td>
<td>0.97</td>
<td>0.13</td>
</tr>
<tr>
<td>Blast versus penetrating</td>
<td>2.86 (0.90, 12.19)</td>
<td>0.98</td>
<td>0.25</td>
</tr>
<tr>
<td>Anatomical level of injury</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iliac versus femoral</td>
<td>3.02 (0.32, 20.20)</td>
<td>0.86</td>
<td>0.07</td>
</tr>
<tr>
<td>Popliteal versus femoral</td>
<td>1.85 (1.14, 2.58)</td>
<td>0.99</td>
<td>0.09</td>
</tr>
<tr>
<td>Tibial versus femoral</td>
<td>1.42 (0.39, 4.34)</td>
<td>0.72</td>
<td>0.46</td>
</tr>
<tr>
<td>Associated injuries (present versus absent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple arterial injuries</td>
<td>4.85 (1.15, 18.90)</td>
<td>0.98</td>
<td>0.65</td>
</tr>
<tr>
<td>Soft tissue injury</td>
<td>5.80 (1.87, 16.56)</td>
<td>>0.99</td>
<td>0.63</td>
</tr>
<tr>
<td>Fracture</td>
<td>4.30 (1.89, 7.02)</td>
<td>>0.99</td>
<td>0.24</td>
</tr>
<tr>
<td>Nerve injury</td>
<td>1.50 (0.66, 2.92)</td>
<td>0.86</td>
<td>0.12</td>
</tr>
<tr>
<td>Vein injury</td>
<td>1.08 (0.65, 1.82)</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>Complications (present versus absent)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>2.27 (0.51, 7.31)</td>
<td>0.88</td>
<td>0.37</td>
</tr>
<tr>
<td>Duration of ischaemia > 6 h</td>
<td>4.40 (1.57, 11.67)</td>
<td>>0.99</td>
<td>0.46</td>
</tr>
<tr>
<td>Compartment syndrome</td>
<td>5.11 (2.29, 10.81)</td>
<td>>0.99</td>
<td>0.40</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graft versus primary repair</td>
<td>1.45 (0.95, 2.10)</td>
<td>0.96</td>
<td>0.03</td>
</tr>
<tr>
<td>Vein repair versus ligation</td>
<td>0.17 (0.06, 0.39)</td>
<td><0.01</td>
<td>0.25</td>
</tr>
<tr>
<td>Prophylactic fasciotomy (yes versus no)</td>
<td>0.68 (0.15, 3.13)</td>
<td>0.30</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Summary

- Limb Salvage vs. **Primary Amputation**?
- OR – on table arteriogram
- Arterial Shunt
- 4 compartment fasciotomy
- External Skeletal fixation
- Definitive vascular repair
- Soft tissue Debridement/Nerve

- Definitive Orthopedic repair
- Close fasciotomy vs. skin graft
- Nerve Repair vs. tendon transfer
- Limb Salvage vs. **Secondary Amputation**?

- Gustilo III - C skeletal injuries
- Old age/severe co-morbidity
- Sciatic or tibial nerve injury
- Destructive soft tissue injury
- Significant wound contamination
- Multiple/severely comminuted fx
- Elderly with medical comorbidity
- Shock and life-threatening associated injuries

- Prolonged ischemia (6 hr)
- Muscle Necrosis
- Failed revascularization
- Limb sepsis
References

- Fischer’s Mastery of Surgery, 6e Edited by Josef E. Fischer, Daniel B. Jones, Frank B. Pomposelli and Gilbert R. Upchurch. December 2011