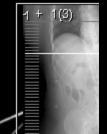
Case Presentation Morbidity and Mortality Conference


Ravi Dhanisetty, M.D. Kings County Hospital Center 1 May 2009 www.downstatesurgery.org Case Presentation

- 53 year old male bus driver had a syncopal episode and found down unresponsive.
- Brought to emergency room by EMS
- Initial vitals SBP 70, HR 120s
- Patient regained consciousness and complained of left flank pain radiating to left groin.
- Patient was aggressively resuscitated and a CT scan of the abdomen was performed.

Case Presentation

Laboratory values:

- Arterial blood gas 7.3/27/150/99.6/18/-7.8
- Lactate 4.7 Hgb / Hct 9.5 / 30

Emergent surgical consultation obtained.

Physical Exam:

- Patient was in extremis pale, diaphoretic, tachypnic
- Diffusely distended abdomen.

Patient was taken to OR for exploration.

Operative Course

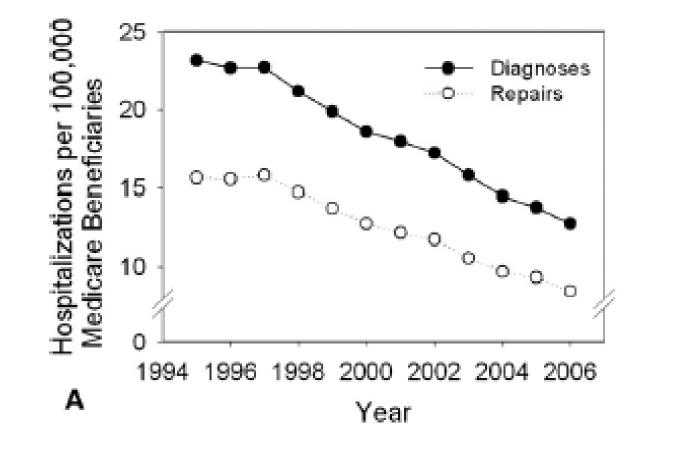
- Giant retroperitoneal hematoma extending from the inguinal ligament to diaphragm with hemoperitoneum
- Size of hematoma precluded proximal vascular control outside the hematoma.
- Entered the hematoma and proximal control was attempted by compressing aorta against the spine
- Left sided medial visceral rotation was performed
- Aorta was clamped proximal to a widely ruptured iliac artery aneurysm.
- A distal clamp was placed on the iliac artery

Operative Course

By this time, patient lost signs of life Ocoarse v.fib on the monitor.

 Resuscitation including antero-lateral thoracotomy with open cardiac massage failed to revive the patient.

Intra-operatively, patient received 13 units of pRBCs.


Ruptured Abdominal Aortic Aneurysm

Ravi Dhanisetty, MD May 1, 2009 www.downstatesurgery.org Ruptured AAA: Background

Sudden, unheralded event
 13th leading cause of death

Usually fatal (70-80%).
Only 50% present to hospital alive.
Emergent repair of ruptured aneurysms
Staggering mortality of up to 50%
10 X that of elective repair.

www.downstatesurgery.org Ruptured AAA: Incidence

Mureebee et al. JVS 2008.

Risk Factors for Developing Aneurysms

- Age peak prevalence of 6% at 80-85 y.o.
- Male Gender 4 5 x more common.
- Smoking 8x compared to non-smokers
- Family history and
 - OHistory of inguinal hernia
- Diabetes and female gender negative risk factors.

Rupture Risk of Stable Asymptomatic AAA

Greatest Diameter (cm)	Annual Rupture Risk (%)	
3.0–5.5	0.6	
5.6–5.9	5–10	
6.0–6.9	10–20	
7.0–7.9	20–30	
>8.0	30–50	

- Elective repair > 5.5 cm. Growth > 0.5 cm/ 6mo
- Biannual surveillance

Curi et al. Carmeron 2008.

Risk Factors for Rupture of AAA

Risk Factors	Low Risk	High Risk
Diameter	< 5 cm	> 6 cm
Expansion	< 0.3 cm /yr	> 0.6 cm / yr
Hypertension	None	Poorly Controlled
Smoking / COPD	None / Mild	Steroid Dependent
Family History	None	Positive

www.downstatesurgery.org Natural History

Retrospective review

56 patients with ruptured AAA and no surgical intervention.

- Once decision made not to operate:
 - OMinimal fluids
 - Average survival
 10 hours
 - 87% alive at 2 hrs.

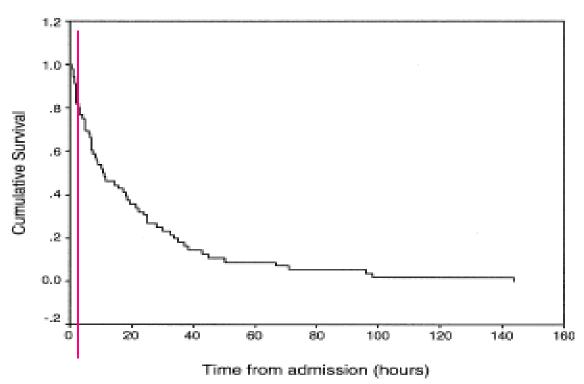
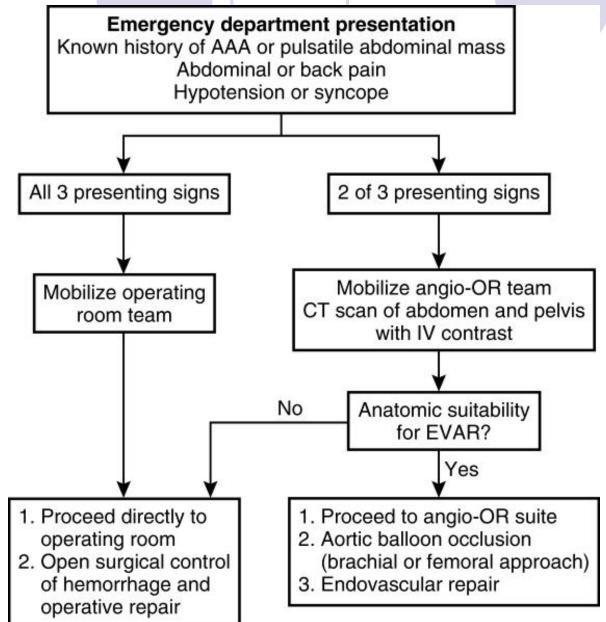


Fig 2. Survival curve shows cumulative survival after admission.

• Lloyd et al, JVS 2004

Presentation & Initial Management

Two distinct groups (based on hypotension)


 Hypotension ± known history of AAA or pulsatile mass

Free intra-peritoneal rupture

No hypotension, or responsive to initial resuscitation

Contained / Retro-peritoneal rupture

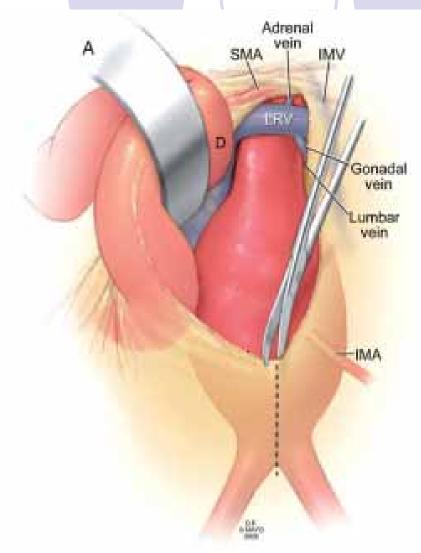
www.downstatesurgery.org Presentation & Initial Management

DeRubertis, BG et al. Cameron, 2008.

Presentation and Initial Management

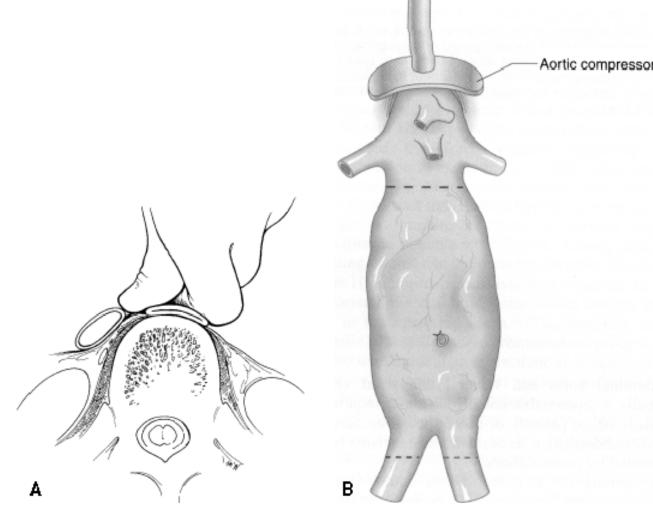
- Patient should be immediately transferred to operating room and all other tests performed there
- Hypotensive resuscitation may be considered
 Ievel I rapid transfusion system and auto-transfusion device are a must.
- Prep and drape patient prior to induction of anesthesia.

Surgical Management

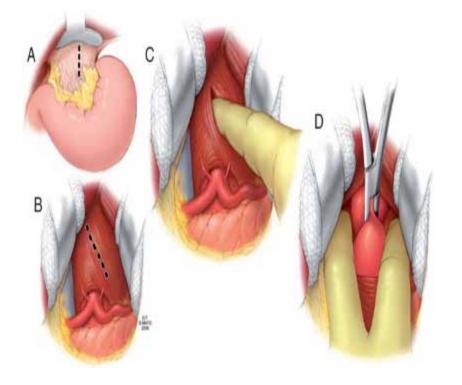

Most important step – *control of hemorrhage by proximal aortic occlusion*:

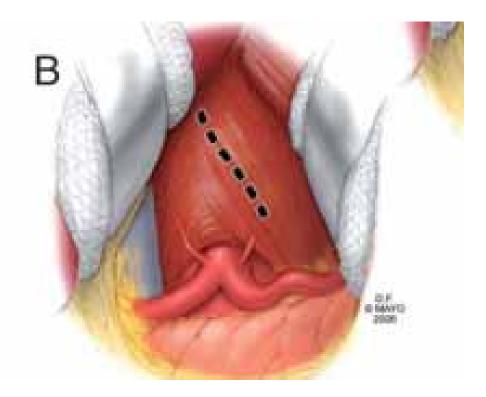
- Supra-celiac occlusion or clamping
- OControl of aorta within the hematoma
- Rarely antero-lateral thoracotomy with aortic clamping if patient arrests prior to incision.

www.downstatesurgery.org Anatomy

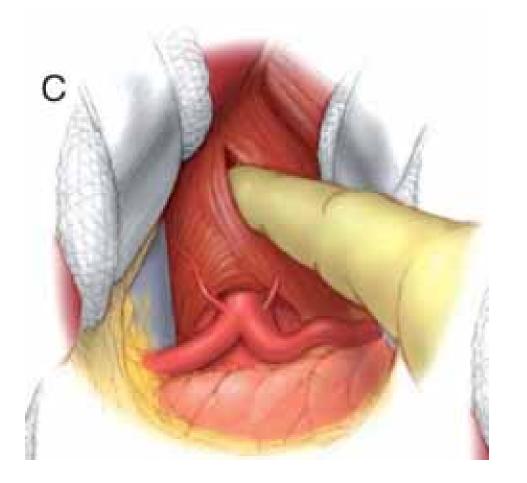

WHY NOT INFRA-RENAL ??

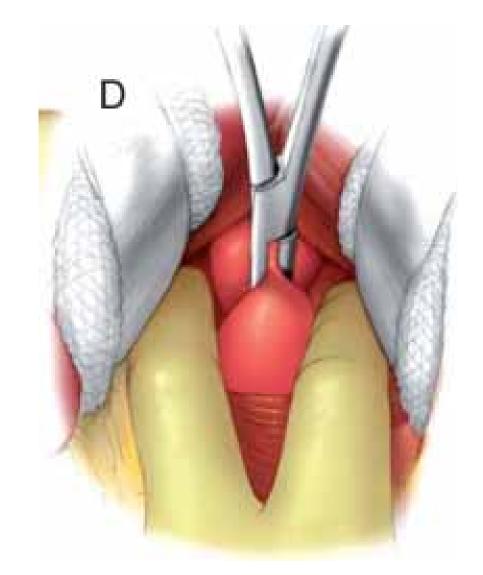
- Hematoma obscuring veins
- Venous anomalies




www.downstatesurgery.org Manual compression of the supraceliac aorta against the spine

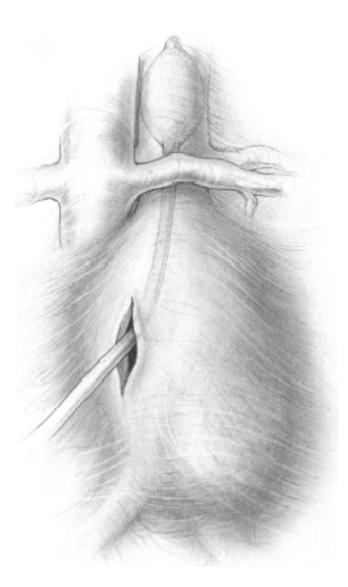
 Temporary control of supraceliac aorta.


www.downstatesurgery.org Supra-Celiac Control of Aorta



Veith FJ, et al: Surg Gynecol Obste., 1980.

www.downstatesurgery.org Supra-Celiac Control of Aorta



 Veith FJ, et al: Surg Gynecol Obste., 1980.

www.downstatesurgery.org Proximal Control from within the Ruptured Aneurysm

 In the case of an uncontained rupture, a foley catheter can be inflated in the supra-renal aorta to gain rapid proximal control.

Surgical Management

- Once proximal control is achieved
 - Further dissection can be carried to expose infra-renal portion of aorta to move cross clamp to infra-renal location
 - Distal control of iliacs most commonly from within the aneurysm lumen.
 - ORepair of aneurysm with prosthetic graft.

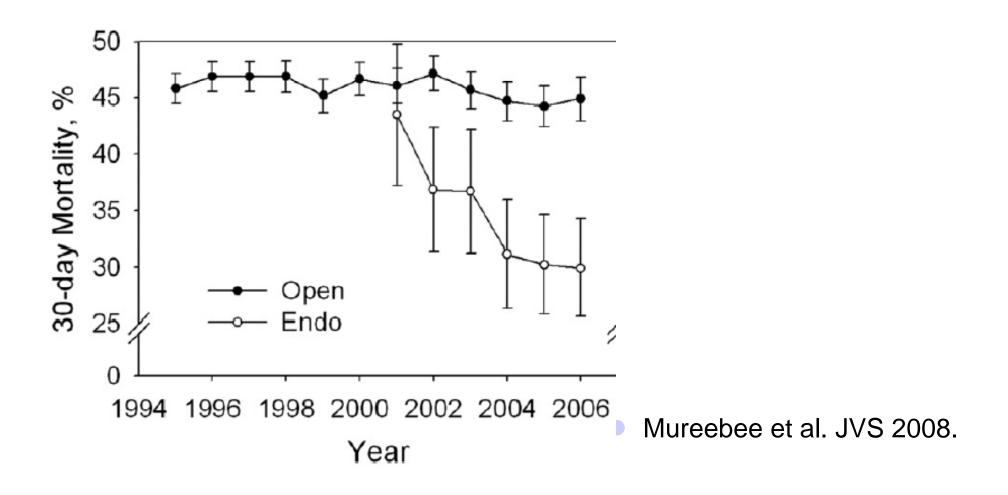
Complications

Bleeding

OSecondary to injury to adjacent veins:

Infra-renal aorta is a large artery surrounded by veins

Lower Extremity Ischemia


OCross clamping, embolization, distal anastomosis.

Intestinal Ischemia (40%)

OMortality in up to 80% of patients

Abdominal Compartment Syndrome

Recent Outcomestatesurgery.org 30 Day Mortality after Ruptured AAA Repair

Prognostic Score to Predict Outcome

Edinburgh Ruptured Aneurysm Score (ERAS)
 Hemoglobin level 9 g/dL
 GCS of < 15
 Blood pressure of less than 90 mm Hg

- Prospective evaluation with 111 patients and compared to other scoring systems (HI, GAS, POSSUM)
- ERAS only one to accurately stratify peri-operative risk

Tambyraja et al. World J. Surg 2008

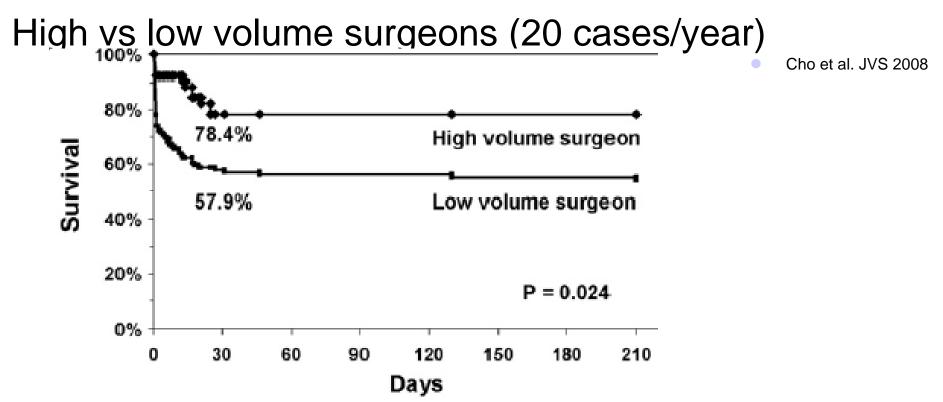

Prognostic Score to Predict Outcome

Table VI. Distribution and mortality rates in 84 patients according to Edinburgh Ruptured Aneurysm Score

Edinburgh Ruptured Aneurysm Score	$\leq l$	2	3
Patients, No. (%)	46 (55)	27 (32)	11 (13)
Deaths, No. (%)	12 (26)	16 (59)	9 (82)

www.downstatesurgery.org Other Factors Affecting Outcome

Retrospective review of 213 patients that underwent open repair of ruptured AAA at a tertiary referral center.

www.downstatesurgery.org Other Factors Affecting Outcome

Table III. Factors associated with in-hospital mortality (Cox proportional hazard model)

Variable	Hazard ratio	95% Confidence interval	P value	
Surgeon's annual AAA volume ≥20	0.280	0.093, 0.841	.023	
Age Intestinal ischemia	$\begin{array}{c} 1.076 \\ 4.342 \end{array}$	1.016, 1.139 1.720, 10.961	.012 .002	

Cho et al. 2008

Screening

 Consensus Statement in 2004 based on 6 prospective randomized studies.

- OScreening general population for AAA
- OHigh compliance
- ODecreased AAA related mortality (up to 68%)
- ODecrease rupture rate (49%)

Kent et al JVS 2004.

Screening Recommendations

- All men aged 60 to 85 years
- Women aged 60 to 85 years with cardiovascular risk factors
- Men and women older than 50 years with a family history of AAA.
- Aortic diameter less than 3 cm, no further testing
- AAA 3 to 4 cm in diameter, yearly ultrasound examination
- AAA 4 to 4.5 cm in diameter, ultrasound examination every 6 months
- AAA greater than 4.5 cm in diameter, referral to a vascular specialist.

Kent et al JVS 2004.

Conclusion

- Ruptured AAA continues to be a highly lethal problem.
- Successful outcomes depend on establishing correct diagnosis and rapid surgical control of hemorrhage.
- Screening, early detection of aneurysm and elective repair remains most likely way to reduce aneurysm-related death.

Questions

- Which one of the following is associated with poor outcome in a patient undergoing repair of rAAA?
 - a. Peri-operative cardiac arrest
 - b. Intestinal ischemia
 - c. Age > 80
 - d. Initial blood pressure < 90 mm Hg
 - e. All of the above
- Risk factors associated with development of AAA include:
 - a. Smoking
 - b. Age
 - c. Family history
 - d. All of the above

Questions

- Screening is recommended in all of the patients except:
 - a. 75 year old male with history of hypertension
 - b. 65 year old female with history of MI
 - c. 54 year old male with family history of AAA
 - d. 75 year old male with aortic diameter of 2.8 cm on a CT scan a year ago.
 - Peri-operative complications of repair of ruptured AAA include all of the following except.
 - a. Myocardial Infarction
 - b. Bleeding
 - c. Intestinal ischemia
 - d. Lower extremity ischemia
 - e. None of the above

Questions

- Initial evaluation of a hypotensive patient with suspected ruptured AAA include:
 - a. Rapid assessment and transport to operating room
 - b. Aggressive resuscitation with fluid and pressors
 - c. CT scan with iv contrast
 - d. None of the above.

www.downstatesurgery.org References

- Cameron: Current Surgical Therapy. 9th ed. 2008.
- Cho et al. Contemporary results of open repair of ruptured abdominal aortoiliac aneurysms: effect of surgeon volume on mortality. J Vas Surg: 48(1), 2008.
- Dardik et al. Surgical Repair of rAAA in the state of Maryland: Factors influencing outcome among 527 recent cases. J Vas Surg 28(3), 1998.
- Kent et al. Screening for abdominal aortic aneurysm: A consensus statement. J Vasc Surg: 39(1), 2004.
- Lloyd et al. Feasibility of pre-operative CT in patients with ruptured abdominal aortic aneurysm: a time-to-death study in patients without operation. J Vasc Surg 2004; 39: 788-91.
- Mureebe, et al. National Trends in repair of ruptured AAA. JVS: 48(5), 2008.
- Tambyraja A, Murie J, Chalmers R. Predictors of outcome after abdominal aortic aneurysm rupture: Edinburgh Ruptured Aneurysm Score. World J Surg 2007;31:2243-7.
- Tambyraja et al. Prognostic Scoring in Ruptured abdominal aortic aneurysm: a prospective evaluation. J Vas Surg: 47(2), 2008.
- Townsend: Sabiston Textbook of Surgery, 18th ed. 2007.
- Veith FJ, Gupta S, Daly V: Surg Gynecol Obstet 151:497,1980.

www.downstatesurgery.org Other Factors Affecting Outcome

Table III. Effect of patient demographic and comorbid variables on rAAA mortality rate

	Factor	п	Mortality rate (%)	P^*
Gender	Female	108	51.9 ± 4.8	0.33
	Male	419	46.3 ± 2.4	
Racet	White	494	48.2 ± 2.3	0.24
	Black	28	35.7 ± 9.2	
Hypertension	Yes	135	33.3 ± 4.1	< 0.0001
	No	392	52.3 ± 2.5	
Diabetes	Yes	30	26.7 ± 8.2	0.023
	No	497	48.7 ± 2.2	
COPD	Yes	115	36.5 ± 4.5	0.008
	No	412	50.5 ± 2.5	
Smoker	Yes	10	30.0 ± 15.3	0.35
	No	517	47.8 ± 2.2	
Cardiac disease	Yes	80	37.5 ± 5.4	0.07
	No	447	49.2 ± 2.4	
Renal disease	Yes	9	44.4 ± 17.6	0.99
	No	518	47.5 ± 2.2	

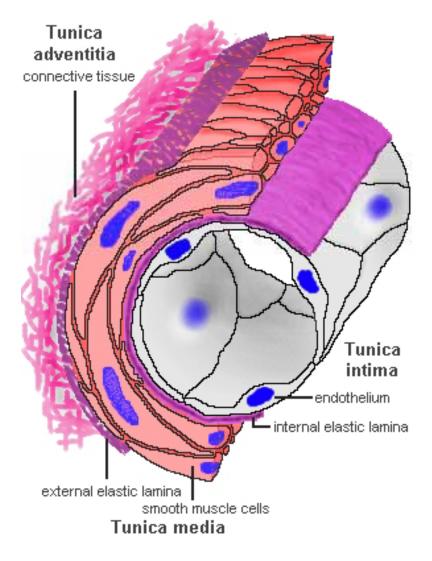
Dardik et al

www.downstatesurgery.org Other Factors Affecting Outcome: Surgeon Volume

Class	п*	Mortality rate (%)	LOS (days)	Charge (\$)	Age (yr)	Medical complexity score
Low Medium High P	315 121 91	50.8 ± 2.8 47.1 ± 4.6 36.3 ± 5.1 0.05†	11.7 ± 0.8 11.6 ± 1.0 12.4 ± 1.8 0.46‡	27,362 ± 1283 28,575 ± 1748 23,740 ± 2356 0.018‡	72.1 ± 0.5 72.1 ± 0.8 71.3 ± 0.9 0.49‡	3.19 ± 0.06 3.22 ± 0.09 3.08 ± 0.10 0.39‡

Table V. Effect of surgeon volume on rAAA mortality rate

*Surgeon class is based on 1 to 4 (n = 199 surgeons), 5 to 9 (n = 20), or 10 or more (n = 7) rAAA repairs per surgeon. n represents the number of patients per surgeon class.


Pathogenesis

Most are degenerative:

- Interaction of multiple factors is responsible for destruction of media of the aortic wall leading to aneurysm.
- OThe balance of aortic wall remodeling favors elastin and collagen degradation.

www.downstatesurgery.org Components of Aortic Wall

- Elastin and collagen are major structural components and act in complementary fashion.
- Elastin in media
 - Not synthesized in aorta with half-life of 40 – 70 yrs.
 - Coad-bearing and elastic recoil
- Collagen in adventitia
 - Tensile strength and structural integrity.

www.downstatesurgery.org Pathophysiology: Aneurysm Formation

- Histology: aneurysm wall thin and marked decrease in the amount of elastin and collagen.
- Elastin degradation / fragmentation: aneurysmal formation, elongation, and tortuosity
- Collagen degradation: aneurysmal rupture
- Primarily by proteolytic enzymes
 - Either over expression or decreased expression of protease inhibitor (alpha –1 antitrypsin or tissue inhibitors of MMP (TIMPs)).

Pathophysiology: enlargement.

Laplace's Law:

 \bigcirc T (tangential stress) = P (tangential pressure) x R / δ

 Size and hypertension are important risk factors in the rate of enlargement.