Management of Transmediastinal Injuries

MARIA GEORGIADES, MD
JUNE 21, 2012
18 year old male with GSW to the right chest

GCS 15

Patient was intubated in the ED

Diminished breath sounds on right side
Case Presentation

Physical Exam:
- VS: T96.8 SBP 100
- HR 116 O2 100%
- Chest: entry wound in 5th intercostal space mid-scapular
- CV: sinus tachycardia
- Abd: soft nontender, non distended
- Pelvis: stable

ABG: 6.89/40/400/7.3/98.3/-22.7
Case Presentation

- Chest tube was placed with 600 ml blood drained
- SBP increased to 120mm Hg.
- Received 2 units PRBCs
CT scan findings

• CT Chest:
 o Likely superior caval injury with active extravasation into large right hemothorax
 o Extensive mediastinal hematoma
 o Bilateral pneumothoraces

• CT abdomen/pelvis:
 o Poor enhancement of spleen and kidney compatible with hypoperfusion
Operation

- Bilateral anterolateral thoracotomies
 - EBL: 3000 mL
 - PRBCs: 9 units
 - Pulmonary artery repair
 - Continued bleeding ? Intercostal vessels
 - No pericardial blood; heart empty
 - Expired at 01: 49 am
Case Presentation

- ME report:
 - Injury to Superior vena cava
 - Injury to esophagus
 - Left common carotid off the aortic arch
 - Left subclavian vein
 - Landed in the left clavicular region
Outline

- Anatomy
- Initial evaluation
- Operative indications
- Operative Incisions
- Great vessel injury
Superior Mediastinum

- Thymus
- Brachiocephalic veins
- Superior vena cava
- Azygos vein
- Aortic arch
- Pulmonary arteries
- Vagus nerve
- Phrenic nerves
Inferior mediastinum

- **Anterior:**
 - Caudal thymus gland
 - Sternopericardial ligaments
- **Middle:**
 - Heart and great vessels
 - Phrenic nerves
- **Posterior:**
 - Descending aorta
 - Esophagus
 - Thoracic duct
 - Sympathetic chains
 - Vagus nerves
 - Hemiazygos vein
Initial Evaluation

- ATLS
- Reconstruct the path
- Physical exam – breath sounds, subcutaneous emphysema, elevation of jugular venous pulsation
- CXR
- Judicious fluid administration
Management of Chest Trauma

- **Tube thoracostomy:**
 - 1500 mL initial bloody drainage or greater
 - >250 mL per hour

- **Hemodynamically stable patients with injury that traverse mediastinum:**
 - Endoscopy/ arteriography
 - CT scan
Acute Indications for Thoracotomy

<table>
<thead>
<tr>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute hemodynamic deterioration</td>
</tr>
<tr>
<td>And cardiac arrest in trauma center</td>
</tr>
<tr>
<td>Penetrating truncal trauma</td>
</tr>
<tr>
<td>Cardiac tamponade</td>
</tr>
<tr>
<td>Hemopericardium</td>
</tr>
<tr>
<td>Vascular injury at thoracic outlet</td>
</tr>
<tr>
<td>Massive air leak from chest tube</td>
</tr>
</tbody>
</table>
Acute Indications for Thoracotomy

- **Endoscopic or radiographic evidence of tracheal/bronchial injury**
- **Great vessel injury radiographic**
- **Missile embolism to heart or pulmonary artery**
- **Traumatic thoracotomy**
- **True mediastinal traverse with penetrating object**
- **Suspected cardiac herniation**
Operative Incisions

- **Left anterolateral thoracotomy:**
 - Resuscitation under acute deterioration or cardiac arrest
 - Exposure for opening pericardium, open cardiac massage, clamping of descending thoracic aorta
 - Left lung and cardiac injuries

Injury to the aorta, intercostal arteries, esophagus and phrenic nerve

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Transsternal extension

Trauma to the Right Heart

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Operative Incisions

- **Right posterolateral:**
 - *Pulmonary
 - *Tracheal
 - *mid-esophageal injuries
 - SVC, IVC, azygous vein
Operative Incisions

- **Left posterolateral:**
 - Posterior mediastinum
 - Left lung
 - Hilum
 - Descending thoracic aorta
 - Heart for cardiac massage
 - Proximal L. subclavian
 - Some access to proximal L common carotid artery
Operative Incisions

- **Median Sternotomy:**
 - **PROS:**
 - Excellent exposure for isolated anterior cardiac and great vessel injuries
 - Anterior mediastinal structures: ascending aorta, innominate artery and left common carotid
 - **CONS**
 - Provides NO access to esophagus and posterior thorax
 - Difficult to clamp the thoracic aorta
Operative Incisions

- **Right anterolateral:**
 - Right lung and chest injury
“Trap door” or “book” incision:
- Exposure to long segment of L common carotid and L subclavian artery
- Sternocleidomastoid cut to facilitate exposure
 - Avoid injury to phrenic nerve
- Difficulties include stretching the brachial plexus
THORACIC GREAT VESSEL INJURY

- 90% - penetrating trauma
 - Length of knife
 - Firearm type
 - Number of rounds fired
 - Distance from firearm

- Gunshot injury traversing mediastinum
 - Hemodynamic instability from thoracic vascular injury-50%
 - Operative mortality 20-40%

<table>
<thead>
<tr>
<th>Clinical Presentation of Great Vessel Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hypotension</td>
</tr>
<tr>
<td>- Upper extremity hypertension</td>
</tr>
<tr>
<td>- Unequal blood pressures or pulses in extremities</td>
</tr>
<tr>
<td>- External evidence of major chest trauma</td>
</tr>
<tr>
<td>- Expanding hematoma at thoracic outlet</td>
</tr>
<tr>
<td>- Intrascapular murmur</td>
</tr>
<tr>
<td>- Palpable fracture of sternum</td>
</tr>
<tr>
<td>- Palpable fracture of thoracic spine</td>
</tr>
<tr>
<td>- Left flail chest</td>
</tr>
</tbody>
</table>
CXR findings to suggest penetrating thoracic great vessel injury:

- Large hemothorax
- Foreign bodies or trajectories in proximity to great vessels
- Trajectory with confusing course
- “Missing” missile with GSW to chest to suggest distal embolization in arterial tree
 - Injury to heart, esophagus, trachea, spinal cord, major vasculature
 - Spiral CT
Specific Injuries Algorithm

SPECIFIC INJURIES

- Ascending aorta
- Innominate artery
- Right carotid/Subclavian artery
- Left carotid artery

- Left subclavian artery

- Known descending thoracic aorta
- Intrathoracic left subclavian artery

- Known intrathoracic trachea/esophagus injury

- Clotted hemothorax
- VATS

- Median sternotomy with neck/supraclavicular extension

- Third interspace anterolateral thoracotomy with supraclavicular incision

- Left posterolateral thoracotomy

- Posterolateral thoracotomy

- Posterolateral thoracotomy

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
1997-2003
Retrospective review; 207 patients

Fig 1. Management algorithm for a patient with penetrating mediastinal trauma. *Performed as needed. (CTA = computed tomographic angiogram scan.)

WOUND CLASSIFICATION:

M1- base of neck into mediastinum or pleura

M2-1 pleural cavity or mediastinum violation

M3-parasternal injury within nipple line or <4 cm

M4- 2 pleural cavities and mediastinal trasverse

Table 3. Injury Location at Initial Clinical Presentation

<table>
<thead>
<tr>
<th></th>
<th>Total n GSW (%)</th>
<th>Stable n (%)</th>
<th>Unstable n (%)</th>
<th>Death n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>16 (31)</td>
<td>10 (63)</td>
<td>6 (37)</td>
<td>2 (13)</td>
</tr>
<tr>
<td>M2</td>
<td>34 (50)</td>
<td>26 (76)</td>
<td>8 (24)</td>
<td>5 (15)</td>
</tr>
<tr>
<td>M3</td>
<td>137 (36)</td>
<td>92 (67)</td>
<td>45 (33)</td>
<td>28 (20)</td>
</tr>
<tr>
<td>M4</td>
<td>20 (100)</td>
<td>7 (35)</td>
<td>13 (65)</td>
<td>12 (60)</td>
</tr>
</tbody>
</table>

GSW = gunshot wound; M1–M4 = see Fig 2.
Results

- 72/207 patients (35%) – unstable
 - 40 patients – OR- Most common- pulmonary and great vessel injury

**In stable patient -
No signs of missed injury

![Diagram of patient evaluation process]

Fig 3. Evaluation of the stable patients: results of the diagnostic algorithm. Number of patients in each category listed in parenthesis and percentages reflect the group of stable patients only. (CTA = computed tomographic angiogram scan)
• Trauma. 6th edition. Feliciano, Mattox
• Triage and Outcome of Patients with Mediastinal Penetrating Trauma. Annal Thorac. Surg